|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | 
|  | { | 
|  | //   std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; | 
|  | typedef void (*functype)(int, int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar, Eigen::GemmParallelInfo<Scalar>*); | 
|  | static functype func[12]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<12; ++k) | 
|  | func[k] = 0; | 
|  | func[NOTR  | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  | func[NOTR  | (TR   << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,RowMajor,false,ColMajor>::run); | 
|  | func[TR    | (TR   << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,RowMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (TR   << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, RowMajor,false,ColMajor>::run); | 
|  | func[NOTR  | (ADJ  << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,RowMajor,Conj, ColMajor>::run); | 
|  | func[TR    | (ADJ  << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,RowMajor,Conj, ColMajor>::run); | 
|  | func[ADJ   | (ADJ  << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, RowMajor,Conj, ColMajor>::run); | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | 
|  | Scalar beta   = *reinterpret_cast<Scalar*>(pbeta); | 
|  |  | 
|  | int code = OP(*opa) | (OP(*opb) << 2); | 
|  | if(code>=12 || func[code]==0 || (*m<0) || (*n<0) || (*k<0)) | 
|  | { | 
|  | int info = 1; | 
|  | xerbla_("GEMM", &info, 4); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | if(beta==Scalar(0)) | 
|  | matrix(c, *m, *n, *ldc).setZero(); | 
|  | else | 
|  | matrix(c, *m, *n, *ldc) *= beta; | 
|  |  | 
|  | func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha,  RealScalar *pa, int *lda, RealScalar *pb, int *ldb) | 
|  | { | 
|  | //   std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n"; | 
|  | typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int); | 
|  | static functype func[32]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<32; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0,          false,ColMajor,ColMajor>::run); | 
|  | func[TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0,          false,RowMajor,ColMajor>::run); | 
|  | func[ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0,          Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0,          false,ColMajor,ColMajor>::run); | 
|  | func[TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0,          false,RowMajor,ColMajor>::run); | 
|  | func[ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0,          Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0,          false,ColMajor,ColMajor>::run); | 
|  | func[TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0,          false,RowMajor,ColMajor>::run); | 
|  | func[ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0,          Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0,          false,ColMajor,ColMajor>::run); | 
|  | func[TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0,          false,RowMajor,ColMajor>::run); | 
|  | func[ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0,          Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  |  | 
|  | func[NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor>::run); | 
|  | func[TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor>::run); | 
|  | func[ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor>::run); | 
|  | func[TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor>::run); | 
|  | func[ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor>::run); | 
|  | func[TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor>::run); | 
|  | func[ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor>::run); | 
|  | func[TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor>::run); | 
|  | func[ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar  alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); | 
|  | if(code>=32 || func[code]==0 || *m<0 || *n <0) | 
|  | { | 
|  | int info=1; | 
|  | xerbla_("TRSM",&info,4); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(SIDE(*side)==LEFT) | 
|  | func[code](*m, *n, a, *lda, b, *ldb); | 
|  | else | 
|  | func[code](*n, *m, a, *lda, b, *ldb); | 
|  |  | 
|  | if(alpha!=Scalar(1)) | 
|  | matrix(b,*m,*n,*ldb) *= alpha; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // b = alpha*op(a)*b  for side = 'L'or'l' | 
|  | // b = alpha*b*op(a)  for side = 'R'or'r' | 
|  | int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha,  RealScalar *pa, int *lda, RealScalar *pb, int *ldb) | 
|  | { | 
|  | //   std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n"; | 
|  | typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); | 
|  | static functype func[32]; | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<32; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0,          false,ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0,          false,ColMajor,false,RowMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0,          false,ColMajor,false,RowMajor,Conj, ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0,          false,ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0,          false,ColMajor,false,RowMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0,          false,ColMajor,false,RowMajor,Conj, ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  |  | 
|  | func[NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | func[TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run); | 
|  | func[ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar  alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); | 
|  | if(code>=32 || func[code]==0 || *m<0 || *n <0) | 
|  | { | 
|  | int info=1; | 
|  | xerbla_("TRMM",&info,4); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // FIXME find a way to avoid this copy | 
|  | Matrix<Scalar,Dynamic,Dynamic> tmp = matrix(b,*m,*n,*ldb); | 
|  | matrix(b,*m,*n,*ldb).setZero(); | 
|  |  | 
|  | if(SIDE(*side)==LEFT) | 
|  | func[code](*m, *n, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha); | 
|  | else | 
|  | func[code](*n, *m, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*b + beta*c  for side = 'L'or'l' | 
|  | // c = alpha*b*a + beta*c  for side = 'R'or'r | 
|  | int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | 
|  | { | 
|  | //   std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | 
|  |  | 
|  | if(*m<0 || *n<0) | 
|  | { | 
|  | int info=1; | 
|  | xerbla_("SYMM",&info,4); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); | 
|  | else                matrix(c, *m, *n, *ldc) *= beta; | 
|  |  | 
|  | if(SIDE(*side)==LEFT) | 
|  | if(UPLO(*uplo)==UP)       ei_product_selfadjoint_matrix<Scalar, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); | 
|  | else if(UPLO(*uplo)==LO)  ei_product_selfadjoint_matrix<Scalar, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); | 
|  | else                      return 0; | 
|  | else if(SIDE(*side)==RIGHT) | 
|  | if(UPLO(*uplo)==UP)       ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); | 
|  | else if(UPLO(*uplo)==LO)  ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); | 
|  | else                      return 0; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*a' + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*a'*a + beta*c  for op = 'T'or't','C'or'c' | 
|  | int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) | 
|  | { | 
|  | //   std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; | 
|  | typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar); | 
|  | static functype func[8]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<8; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[NOTR  | (UP << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Upper>::run); | 
|  | func[TR    | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run); | 
|  | func[ADJ   | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run); | 
|  |  | 
|  | func[NOTR  | (LO << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Lower>::run); | 
|  | func[TR    | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run); | 
|  | func[ADJ   | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | 
|  |  | 
|  | int code = OP(*op) | (UPLO(*uplo) << 2); | 
|  | if(code>=8 || func[code]==0 || *n<0 || *k<0) | 
|  | { | 
|  | int info=1; | 
|  | xerbla_("SYRK",&info,4); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; | 
|  |  | 
|  | func[code](*n, *k, a, *lda, c, *ldc, alpha); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*b' + alpha*b*a' + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*a'*b + alpha*b'*a + beta*c  for op = 'T'or't' | 
|  | int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | 
|  | { | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | 
|  |  | 
|  | // TODO | 
|  | std::cerr << "Eigen BLAS: _syr2k is not implemented yet\n"; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if ISCOMPLEX | 
|  |  | 
|  | // c = alpha*a*b + beta*c  for side = 'L'or'l' | 
|  | // c = alpha*b*a + beta*c  for side = 'R'or'r | 
|  | int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | 
|  | { | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | 
|  |  | 
|  | //   std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | if(*m<0 || *n<0) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | matrix(c, *m, *n, *ldc) *= beta; | 
|  |  | 
|  | if(SIDE(*side)==LEFT) | 
|  | if(UPLO(*uplo)==UP)       ei_product_selfadjoint_matrix<Scalar, RowMajor,true,Conj,  ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); | 
|  | else if(UPLO(*uplo)==LO)  ei_product_selfadjoint_matrix<Scalar, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); | 
|  | else                      return 0; | 
|  | else if(SIDE(*side)==RIGHT) | 
|  | if(UPLO(*uplo)==UP)       ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, RowMajor,true,Conj,  ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); | 
|  | else if(UPLO(*uplo)==LO)  ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); | 
|  | else                      return 0; | 
|  | else | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*conj(a') + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*conj(a')*a + beta*c  for op  = 'C'or'c' | 
|  | int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) | 
|  | { | 
|  | typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar); | 
|  | static functype func[8]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<8; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[NOTR  | (UP << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Upper>::run); | 
|  | func[ADJ   | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run); | 
|  |  | 
|  | func[NOTR  | (LO << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Lower>::run); | 
|  | func[ADJ   | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | RealScalar alpha = *palpha; | 
|  | RealScalar beta  = *pbeta; | 
|  |  | 
|  | //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | if(*n<0 || *k<0) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int code = OP(*op) | (UPLO(*uplo) << 2); | 
|  | if(code>=8 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | if(beta!=RealScalar(1)) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; | 
|  |  | 
|  | matrix(c, *n, *n, *ldc).diagonal().real() *= beta; | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  | } | 
|  |  | 
|  | if(*k>0 && alpha!=RealScalar(0)) | 
|  | { | 
|  | func[code](*n, *k, a, *lda, c, *ldc, alpha); | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c,  for op = 'N'or'n' | 
|  | // c = alpha*conj(b')*a + conj(alpha)*conj(a')*b + beta*c,  for op = 'C'or'c' | 
|  | int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) | 
|  | { | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<Scalar*>(pbeta); | 
|  |  | 
|  | if(*n<0 || *k<0) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // TODO | 
|  | std::cerr << "Eigen BLAS: _her2k is not implemented yet\n"; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif // ISCOMPLEX |