|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void replicate(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Replicate.cpp | 
|  | */ | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; | 
|  | typedef Matrix<Scalar, Dynamic, 1> VectorX; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols); | 
|  |  | 
|  | VectorType v1 = VectorType::Random(rows); | 
|  |  | 
|  | MatrixX x1, x2; | 
|  | VectorX vx1; | 
|  |  | 
|  | int  f1 = ei_random<int>(1,10), | 
|  | f2 = ei_random<int>(1,10); | 
|  |  | 
|  | x1.resize(rows*f1,cols*f2); | 
|  | for(int j=0; j<f2; j++) | 
|  | for(int i=0; i<f1; i++) | 
|  | x1.block(i*rows,j*cols,rows,cols) = m1; | 
|  | VERIFY_IS_APPROX(x1, m1.replicate(f1,f2)); | 
|  |  | 
|  | x2.resize(2*rows,3*cols); | 
|  | x2 << m2, m2, m2, | 
|  | m2, m2, m2; | 
|  | VERIFY_IS_APPROX(x2, (m2.template replicate<2,3>())); | 
|  |  | 
|  | x2.resize(rows,f1); | 
|  | for (int j=0; j<f1; ++j) | 
|  | x2.col(j) = v1; | 
|  | VERIFY_IS_APPROX(x2, v1.rowwise().replicate(f1)); | 
|  |  | 
|  | vx1.resize(rows*f2); | 
|  | for (int j=0; j<f2; ++j) | 
|  | vx1.segment(j*rows,rows) = v1; | 
|  | VERIFY_IS_APPROX(vx1, v1.colwise().replicate(f2)); | 
|  | } | 
|  |  | 
|  | void test_array_replicate() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( replicate(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( replicate(Vector2f()) ); | 
|  | CALL_SUBTEST_3( replicate(Vector3d()) ); | 
|  | CALL_SUBTEST_4( replicate(Vector4f()) ); | 
|  | CALL_SUBTEST_5( replicate(VectorXf(16)) ); | 
|  | CALL_SUBTEST_6( replicate(VectorXcd(10)) ); | 
|  | } | 
|  | } |