|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <iostream> | 
|  |  | 
|  | using namespace std; | 
|  |  | 
|  | template<typename MatrixType> void reverse(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // this test relies a lot on Random.h, and there's not much more that we can do | 
|  | // to test it, hence I consider that we will have tested Random.h | 
|  | MatrixType m1 = MatrixType::Random(rows, cols); | 
|  | VectorType v1 = VectorType::Random(rows); | 
|  |  | 
|  | MatrixType m1_r = m1.reverse(); | 
|  | // Verify that MatrixBase::reverse() works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Reverse<MatrixType> m1_rd(m1); | 
|  | // Verify that a Reverse default (in both directions) of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Reverse<MatrixType, BothDirections> m1_rb(m1); | 
|  | // Verify that a Reverse in both directions of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Reverse<MatrixType, Vertical> m1_rv(m1); | 
|  | // Verify that a Reverse in the vertical directions of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Reverse<MatrixType, Horizontal> m1_rh(m1); | 
|  | // Verify that a Reverse in the horizontal directions of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | VectorType v1_r = v1.reverse(); | 
|  | // Verify that a VectorType::reverse() of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i)); | 
|  | } | 
|  |  | 
|  | MatrixType m1_cr = m1.colwise().reverse(); | 
|  | // Verify that PartialRedux::reverse() works (for colwise()) | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | MatrixType m1_rr = m1.rowwise().reverse(); | 
|  | // Verify that PartialRedux::reverse() works (for rowwise()) | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Scalar x = ei_random<Scalar>(); | 
|  |  | 
|  | Index r = ei_random<Index>(0, rows-1), | 
|  | c = ei_random<Index>(0, cols-1); | 
|  |  | 
|  | m1.reverse()(r, c) = x; | 
|  | VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c)); | 
|  |  | 
|  | /* | 
|  | m1.colwise().reverse()(r, c) = x; | 
|  | VERIFY_IS_APPROX(x, m1(rows - 1 - r, c)); | 
|  |  | 
|  | m1.rowwise().reverse()(r, c) = x; | 
|  | VERIFY_IS_APPROX(x, m1(r, cols - 1 - c)); | 
|  | */ | 
|  | } | 
|  |  | 
|  | void test_array_reverse() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( reverse(Matrix2f()) ); | 
|  | CALL_SUBTEST_3( reverse(Matrix4f()) ); | 
|  | CALL_SUBTEST_4( reverse(Matrix4d()) ); | 
|  | CALL_SUBTEST_5( reverse(MatrixXcf(3, 3)) ); | 
|  | CALL_SUBTEST_6( reverse(MatrixXi(6, 3)) ); | 
|  | CALL_SUBTEST_7( reverse(MatrixXcd(20, 20)) ); | 
|  | CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) ); | 
|  | CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(6,3)) ); | 
|  | } | 
|  | #ifdef EIGEN_TEST_PART_3 | 
|  | Vector4f x; x << 1, 2, 3, 4; | 
|  | Vector4f y; y << 4, 3, 2, 1; | 
|  | VERIFY(x.reverse()[1] == 3); | 
|  | VERIFY(x.reverse() == y); | 
|  | #endif | 
|  | } |