|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | template<typename MatrixType> void determinant(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Determinant.h | 
|  | */ | 
|  | typedef typename MatrixType::Index Index; | 
|  | Index size = m.rows(); | 
|  |  | 
|  | MatrixType m1(size, size), m2(size, size); | 
|  | m1.setRandom(); | 
|  | m2.setRandom(); | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | Scalar x = ei_random<Scalar>(); | 
|  | VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1)); | 
|  | VERIFY_IS_APPROX((m1*m2).eval().determinant(), m1.determinant() * m2.determinant()); | 
|  | if(size==1) return; | 
|  | Index i = ei_random<Index>(0, size-1); | 
|  | Index j; | 
|  | do { | 
|  | j = ei_random<Index>(0, size-1); | 
|  | } while(j==i); | 
|  | m2 = m1; | 
|  | m2.row(i).swap(m2.row(j)); | 
|  | VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); | 
|  | m2 = m1; | 
|  | m2.col(i).swap(m2.col(j)); | 
|  | VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); | 
|  | VERIFY_IS_APPROX(m2.determinant(), m2.transpose().determinant()); | 
|  | VERIFY_IS_APPROX(ei_conj(m2.determinant()), m2.adjoint().determinant()); | 
|  | m2 = m1; | 
|  | m2.row(i) += x*m2.row(j); | 
|  | VERIFY_IS_APPROX(m2.determinant(), m1.determinant()); | 
|  | m2 = m1; | 
|  | m2.row(i) *= x; | 
|  | VERIFY_IS_APPROX(m2.determinant(), m1.determinant() * x); | 
|  | } | 
|  |  | 
|  | void test_determinant() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( determinant(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( determinant(Matrix<double, 2, 2>()) ); | 
|  | CALL_SUBTEST_3( determinant(Matrix<double, 3, 3>()) ); | 
|  | CALL_SUBTEST_4( determinant(Matrix<double, 4, 4>()) ); | 
|  | CALL_SUBTEST_5( determinant(Matrix<std::complex<double>, 10, 10>()) ); | 
|  | CALL_SUBTEST_6( determinant(MatrixXd(20, 20)) ); | 
|  | } | 
|  | CALL_SUBTEST_6( determinant(MatrixXd(200, 200)) ); | 
|  | } |