|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void diagonal(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols); | 
|  |  | 
|  | //check diagonal() | 
|  | VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); | 
|  | m2.diagonal() = 2 * m1.diagonal(); | 
|  | m2.diagonal()[0] *= 3; | 
|  |  | 
|  | if (rows>2) | 
|  | { | 
|  | enum { | 
|  | N1 = MatrixType::RowsAtCompileTime>1 ?  1 : 0, | 
|  | N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0 | 
|  | }; | 
|  |  | 
|  | // check sub/super diagonal | 
|  | m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>(); | 
|  | m2.template diagonal<N1>()[0] *= 3; | 
|  | VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]); | 
|  |  | 
|  | m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>(); | 
|  | m2.template diagonal<N2>()[0] *= 3; | 
|  | VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]); | 
|  |  | 
|  | m2.diagonal(N1) = 2 * m1.diagonal(N1); | 
|  | m2.diagonal(N1)[0] *= 3; | 
|  | VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]); | 
|  |  | 
|  | m2.diagonal(N2) = 2 * m1.diagonal(N2); | 
|  | m2.diagonal(N2)[0] *= 3; | 
|  | VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_diagonal() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( diagonal(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( diagonal(Matrix4d()) ); | 
|  | CALL_SUBTEST_2( diagonal(MatrixXcf(3, 3)) ); | 
|  | CALL_SUBTEST_2( diagonal(MatrixXi(8, 12)) ); | 
|  | CALL_SUBTEST_2( diagonal(MatrixXcd(20, 20)) ); | 
|  | CALL_SUBTEST_1( diagonal(MatrixXf(21, 19)) ); | 
|  | CALL_SUBTEST_1( diagonal(Matrix<float,Dynamic,4>(3, 4)) ); | 
|  | } | 
|  | } |