|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #define EIGEN2_SUPPORT | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void eigen2support(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols); | 
|  |  | 
|  | Scalar  s1 = ei_random<Scalar>(), | 
|  | s2 = ei_random<Scalar>(); | 
|  |  | 
|  | // scalar addition | 
|  | VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise()); | 
|  | VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1); | 
|  | VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) ); | 
|  | m3 = m1; | 
|  | m3.cwise() += s2; | 
|  | VERIFY_IS_APPROX(m3, m1.cwise() + s2); | 
|  | m3 = m1; | 
|  | m3.cwise() -= s1; | 
|  | VERIFY_IS_APPROX(m3, m1.cwise() - s1); | 
|  |  | 
|  | VERIFY_IS_EQUAL((m1.corner(TopLeft,1,1)), (m1.block(0,0,1,1))); | 
|  | VERIFY_IS_EQUAL((m1.template corner<1,1>(TopLeft)), (m1.template block<1,1>(0,0))); | 
|  | VERIFY_IS_EQUAL((m1.col(0).start(1)), (m1.col(0).segment(0,1))); | 
|  | VERIFY_IS_EQUAL((m1.col(0).template start<1>()), (m1.col(0).segment(0,1))); | 
|  | VERIFY_IS_EQUAL((m1.col(0).end(1)), (m1.col(0).segment(rows-1,1))); | 
|  | VERIFY_IS_EQUAL((m1.col(0).template end<1>()), (m1.col(0).segment(rows-1,1))); | 
|  |  | 
|  | m1.minor(0,0); | 
|  | } | 
|  |  | 
|  | void test_eigen2support() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( eigen2support(Matrix<double,1,1>()) ); | 
|  | CALL_SUBTEST_2( eigen2support(MatrixXd(1,1)) ); | 
|  | CALL_SUBTEST_4( eigen2support(Matrix3f()) ); | 
|  | CALL_SUBTEST_5( eigen2support(Matrix4d()) ); | 
|  | CALL_SUBTEST_2( eigen2support(MatrixXf(200,200)) ); | 
|  | CALL_SUBTEST_6( eigen2support(MatrixXcd(100,100)) ); | 
|  | } | 
|  | } |