|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  |  | 
|  | template<typename Scalar,int Size> void homogeneous(void) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Homogeneous.h | 
|  | */ | 
|  |  | 
|  | typedef Matrix<Scalar,Size,Size> MatrixType; | 
|  | typedef Matrix<Scalar,Size,1, ColMajor> VectorType; | 
|  |  | 
|  | typedef Matrix<Scalar,Size+1,Size> HMatrixType; | 
|  | typedef Matrix<Scalar,Size+1,1> HVectorType; | 
|  |  | 
|  | typedef Matrix<Scalar,Size,Size+1>   T1MatrixType; | 
|  | typedef Matrix<Scalar,Size+1,Size+1> T2MatrixType; | 
|  | typedef Matrix<Scalar,Size+1,Size> T3MatrixType; | 
|  |  | 
|  | Scalar largeEps = test_precision<Scalar>(); | 
|  | if (ei_is_same_type<Scalar,float>::ret) | 
|  | largeEps = 1e-3f; | 
|  |  | 
|  | VectorType v0 = VectorType::Random(), | 
|  | v1 = VectorType::Random(), | 
|  | ones = VectorType::Ones(); | 
|  |  | 
|  | HVectorType hv0 = HVectorType::Random(), | 
|  | hv1 = HVectorType::Random(); | 
|  |  | 
|  | MatrixType m0 = MatrixType::Random(), | 
|  | m1 = MatrixType::Random(); | 
|  |  | 
|  | HMatrixType hm0 = HMatrixType::Random(), | 
|  | hm1 = HMatrixType::Random(); | 
|  |  | 
|  | hv0 << v0, 1; | 
|  | VERIFY_IS_APPROX(v0.homogeneous(), hv0); | 
|  | VERIFY_IS_APPROX(v0, hv0.hnormalized()); | 
|  |  | 
|  | hm0 << m0, ones.transpose(); | 
|  | VERIFY_IS_APPROX(m0.colwise().homogeneous(), hm0); | 
|  | VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized()); | 
|  | hm0.row(Size-1).setRandom(); | 
|  | for(int j=0; j<Size; ++j) | 
|  | m0.col(j) = hm0.col(j).head(Size) / hm0(Size,j); | 
|  | VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized()); | 
|  |  | 
|  | T1MatrixType t1 = T1MatrixType::Random(); | 
|  | VERIFY_IS_APPROX(t1 * (v0.homogeneous().eval()), t1 * v0.homogeneous()); | 
|  | VERIFY_IS_APPROX(t1 * (m0.colwise().homogeneous().eval()), t1 * m0.colwise().homogeneous()); | 
|  |  | 
|  | T2MatrixType t2 = T2MatrixType::Random(); | 
|  | VERIFY_IS_APPROX(t2 * (v0.homogeneous().eval()), t2 * v0.homogeneous()); | 
|  | VERIFY_IS_APPROX(t2 * (m0.colwise().homogeneous().eval()), t2 * m0.colwise().homogeneous()); | 
|  |  | 
|  | VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2, | 
|  | v0.transpose().rowwise().homogeneous() * t2); | 
|  | m0.transpose().rowwise().homogeneous().eval(); | 
|  | VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2, | 
|  | m0.transpose().rowwise().homogeneous() * t2); | 
|  |  | 
|  | T3MatrixType t3 = T3MatrixType::Random(); | 
|  | VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t3, | 
|  | v0.transpose().rowwise().homogeneous() * t3); | 
|  | VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t3, | 
|  | m0.transpose().rowwise().homogeneous() * t3); | 
|  |  | 
|  | // test product with a Transform object | 
|  | Transform<Scalar, Size, Affine> Rt; | 
|  | Matrix<Scalar, Size, Dynamic> pts, Rt_pts1; | 
|  |  | 
|  | Rt.setIdentity(); | 
|  | pts.setRandom(Size,5); | 
|  |  | 
|  | Rt_pts1 = Rt * pts.colwise().homogeneous(); | 
|  | // std::cerr << (Rt_pts1 - pts).sum() << "\n"; | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( (Rt_pts1 - pts).sum(), Scalar(1)); | 
|  | } | 
|  |  | 
|  | void test_geo_homogeneous() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(( homogeneous<float,1>() )); | 
|  | CALL_SUBTEST_2(( homogeneous<double,3>() )); | 
|  | CALL_SUBTEST_3(( homogeneous<double,8>() )); | 
|  | } | 
|  | } |