|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | template<typename Scalar> void quaternion(void) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Quaternion.h | 
|  | */ | 
|  |  | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  |  | 
|  | Scalar largeEps = test_precision<Scalar>(); | 
|  | if (ei_is_same_type<Scalar,float>::ret) | 
|  | largeEps = 1e-3f; | 
|  |  | 
|  | Scalar eps = ei_random<Scalar>() * Scalar(1e-2); | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(), | 
|  | v2 = Vector3::Random(), | 
|  | v3 = Vector3::Random(); | 
|  |  | 
|  | Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | 
|  |  | 
|  | // Quaternion: Identity(), setIdentity(); | 
|  | Quaternionx q1, q2; | 
|  | q2.setIdentity(); | 
|  | VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); | 
|  | q1.coeffs().setRandom(); | 
|  | VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); | 
|  |  | 
|  | // concatenation | 
|  | q1 *= q2; | 
|  |  | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  | q2 = AngleAxisx(a, v1.normalized()); | 
|  |  | 
|  | // angular distance | 
|  | Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); | 
|  | if (refangle>Scalar(M_PI)) | 
|  | refangle = Scalar(2)*Scalar(M_PI) - refangle; | 
|  |  | 
|  | if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) | 
|  | { | 
|  | VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); | 
|  | } | 
|  |  | 
|  | // rotation matrix conversion | 
|  | VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); | 
|  | VERIFY_IS_APPROX(q1 * q2 * v2, | 
|  | q1.toRotationMatrix() * q2.toRotationMatrix() * v2); | 
|  |  | 
|  | VERIFY(  (q2*q1).isApprox(q1*q2, largeEps) | 
|  | || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); | 
|  |  | 
|  | q2 = q1.toRotationMatrix(); | 
|  | VERIFY_IS_APPROX(q1*v1,q2*v1); | 
|  |  | 
|  |  | 
|  | // angle-axis conversion | 
|  | AngleAxisx aa = AngleAxisx(q1); | 
|  | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
|  | VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); | 
|  |  | 
|  | // from two vector creation | 
|  | VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); | 
|  | VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); | 
|  | if (ei_is_same_type<Scalar,double>::ret) | 
|  | { | 
|  | v3 = (v1.array()+eps).matrix(); | 
|  | VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); | 
|  | } | 
|  |  | 
|  | // inverse and conjugate | 
|  | VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); | 
|  |  | 
|  | // test casting | 
|  | Quaternion<float> q1f = q1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); | 
|  | Quaternion<double> q1d = q1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> void mapQuaternion(void){ | 
|  | typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; | 
|  | typedef Map<Quaternion<Scalar> > MQuaternionUA; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  |  | 
|  | EIGEN_ALIGN16 Scalar array1[4]; | 
|  | EIGEN_ALIGN16 Scalar array2[4]; | 
|  | EIGEN_ALIGN16 Scalar array3[4+1]; | 
|  | Scalar* array3unaligned = array3+1; | 
|  |  | 
|  | MQuaternionA(array1).coeffs().setRandom(); | 
|  | (MQuaternionA(array2)) = MQuaternionA(array1); | 
|  | (MQuaternionUA(array3unaligned)) = MQuaternionA(array1); | 
|  |  | 
|  | Quaternionx q1 = MQuaternionA(array1); | 
|  | Quaternionx q2 = MQuaternionA(array2); | 
|  | Quaternionx q3 = MQuaternionUA(array3unaligned); | 
|  |  | 
|  | VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); | 
|  | VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); | 
|  | VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); | 
|  | } | 
|  |  | 
|  | void test_geo_quaternion() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( quaternion<float>() ); | 
|  | CALL_SUBTEST_2( quaternion<double>() ); | 
|  | CALL_SUBTEST( mapQuaternion<float>() ); | 
|  | CALL_SUBTEST( mapQuaternion<double>() ); | 
|  | } | 
|  | } |