|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | template<typename Scalar, int Mode> void transformations(void) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Cross.h Quaternion.h, Transform.cpp | 
|  | */ | 
|  | typedef Matrix<Scalar,2,2> Matrix2; | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | typedef Matrix<Scalar,4,4> Matrix4; | 
|  | typedef Matrix<Scalar,2,1> Vector2; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef Matrix<Scalar,4,1> Vector4; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  | typedef Transform<Scalar,2,Mode> Transform2; | 
|  | typedef Transform<Scalar,3,Mode> Transform3; | 
|  | typedef typename Transform3::MatrixType MatrixType; | 
|  | typedef DiagonalMatrix<Scalar,2> AlignedScaling2; | 
|  | typedef DiagonalMatrix<Scalar,3> AlignedScaling3; | 
|  | typedef Translation<Scalar,2> Translation2; | 
|  | typedef Translation<Scalar,3> Translation3; | 
|  |  | 
|  | Scalar largeEps = test_precision<Scalar>(); | 
|  | if (ei_is_same_type<Scalar,float>::ret) | 
|  | largeEps = 1e-2f; | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(), | 
|  | v2 = Vector3::Random(); | 
|  | Vector2 u0 = Vector2::Random(); | 
|  | Matrix3 matrot1, m; | 
|  |  | 
|  | Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | 
|  | Scalar s0 = ei_random<Scalar>(); | 
|  |  | 
|  | VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); | 
|  | VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); | 
|  | VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); | 
|  | m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); | 
|  | VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); | 
|  | VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); | 
|  |  | 
|  | Quaternionx q1, q2; | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  | q2 = AngleAxisx(a, v1.normalized()); | 
|  |  | 
|  | // rotation matrix conversion | 
|  | matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) | 
|  | * AngleAxisx(Scalar(0.2), Vector3::UnitY()) | 
|  | * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); | 
|  | VERIFY_IS_APPROX(matrot1 * v1, | 
|  | AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() | 
|  | * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() | 
|  | * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); | 
|  |  | 
|  | // angle-axis conversion | 
|  | AngleAxisx aa = AngleAxisx(q1); | 
|  | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
|  | VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); | 
|  |  | 
|  | aa.fromRotationMatrix(aa.toRotationMatrix()); | 
|  | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
|  | VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); | 
|  |  | 
|  | // AngleAxis | 
|  | VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), | 
|  | Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); | 
|  |  | 
|  | AngleAxisx aa1; | 
|  | m = q1.toRotationMatrix(); | 
|  | aa1 = m; | 
|  | VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), | 
|  | Quaternionx(m).toRotationMatrix()); | 
|  |  | 
|  | // Transform | 
|  | // TODO complete the tests ! | 
|  | a = 0; | 
|  | while (ei_abs(a)<Scalar(0.1)) | 
|  | a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  | Transform3 t0, t1, t2; | 
|  |  | 
|  | // first test setIdentity() and Identity() | 
|  | t0.setIdentity(); | 
|  | VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
|  | t0.matrix().setZero(); | 
|  | t0 = Transform3::Identity(); | 
|  | VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
|  |  | 
|  | t0.linear() = q1.toRotationMatrix(); | 
|  | t1.setIdentity(); | 
|  | t1.linear() = q1.toRotationMatrix(); | 
|  |  | 
|  | v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5)); | 
|  | t0.scale(v0); | 
|  | t1.prescale(v0); | 
|  |  | 
|  | VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x()); | 
|  | //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x())); | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t1.setIdentity(); | 
|  | v1 << 1, 2, 3; | 
|  | t0.linear() = q1.toRotationMatrix(); | 
|  | t0.pretranslate(v0); | 
|  | t0.scale(v1); | 
|  | t1.linear() = q1.conjugate().toRotationMatrix(); | 
|  | t1.prescale(v1.cwiseInverse()); | 
|  | t1.translate(-v0); | 
|  |  | 
|  | VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | 
|  |  | 
|  | t1.fromPositionOrientationScale(v0, q1, v1); | 
|  | VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | 
|  | VERIFY_IS_APPROX(t1*v1, t0*v1); | 
|  |  | 
|  | t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); | 
|  | t1.setIdentity(); t1.scale(v0).rotate(q1); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); | 
|  | VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); | 
|  |  | 
|  | // More transform constructors, operator=, operator*= | 
|  |  | 
|  | Matrix3 mat3 = Matrix3::Random(); | 
|  | Matrix4 mat4; | 
|  | mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); | 
|  | Transform3 tmat3(mat3), tmat4(mat4); | 
|  | if(Mode!=int(AffineCompact)) | 
|  | tmat4.matrix()(3,3) = Scalar(1); | 
|  | VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); | 
|  |  | 
|  | Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | 
|  | Vector3 v3 = Vector3::Random().normalized(); | 
|  | AngleAxisx aa3(a3, v3); | 
|  | Transform3 t3(aa3); | 
|  | Transform3 t4; | 
|  | t4 = aa3; | 
|  | VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | 
|  | t4.rotate(AngleAxisx(-a3,v3)); | 
|  | VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
|  | t4 *= aa3; | 
|  | VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | 
|  |  | 
|  | v3 = Vector3::Random(); | 
|  | Translation3 tv3(v3); | 
|  | Transform3 t5(tv3); | 
|  | t4 = tv3; | 
|  | VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | 
|  | t4.translate(-v3); | 
|  | VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
|  | t4 *= tv3; | 
|  | VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | 
|  |  | 
|  | AlignedScaling3 sv3(v3); | 
|  | Transform3 t6(sv3); | 
|  | t4 = sv3; | 
|  | VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | 
|  | t4.scale(v3.cwiseInverse()); | 
|  | VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
|  | t4 *= sv3; | 
|  | VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | 
|  |  | 
|  | // matrix * transform | 
|  | VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix()); | 
|  |  | 
|  | // chained Transform product | 
|  | VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); | 
|  |  | 
|  | // check that Transform product doesn't have aliasing problems | 
|  | t5 = t4; | 
|  | t5 = t5*t5; | 
|  | VERIFY_IS_APPROX(t5, t4*t4); | 
|  |  | 
|  | // 2D transformation | 
|  | Transform2 t20, t21; | 
|  | Vector2 v20 = Vector2::Random(); | 
|  | Vector2 v21 = Vector2::Random(); | 
|  | for (int k=0; k<2; ++k) | 
|  | if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); | 
|  | t21.setIdentity(); | 
|  | t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); | 
|  | VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), | 
|  | t21.pretranslate(v20).scale(v21).matrix()); | 
|  |  | 
|  | t21.setIdentity(); | 
|  | t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); | 
|  | VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) | 
|  | * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); | 
|  |  | 
|  | // Transform - new API | 
|  | // 3D | 
|  | t0.setIdentity(); | 
|  | t0.rotate(q1).scale(v0).translate(v0); | 
|  | // mat * aligned scaling and mat * translation | 
|  | t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t1 = (Matrix3(q1) * Scaling(v0)) * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t1 = (q1 * Scaling(v0)) * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // mat * transformation and aligned scaling * translation | 
|  | t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t0.scale(s0).translate(v0); | 
|  | t1 = Scaling(s0) * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | t0.prescale(s0); | 
|  | t1 = Scaling(s0) * t1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t0.prerotate(q1).prescale(v0).pretranslate(v0); | 
|  | // translation * aligned scaling and transformation * mat | 
|  | t1 = (Translation3(v0) * AlignedScaling3(v0)) * Matrix3(q1); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // scaling * mat and translation * mat | 
|  | t1 = Translation3(v0) * (AlignedScaling3(v0) * Matrix3(q1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | t0.setIdentity(); | 
|  | t0.scale(v0).translate(v0).rotate(q1); | 
|  | // translation * mat and aligned scaling * transformation | 
|  | t1 = AlignedScaling3(v0) * (Translation3(v0) * Matrix3(q1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // transformation * aligned scaling | 
|  | t0.scale(v0); | 
|  | t1 = t1 * AlignedScaling3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // transformation * translation | 
|  | t0.translate(v0); | 
|  | t1 = t1 * Translation3(v0); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  | // translation * transformation | 
|  | t0.pretranslate(v0); | 
|  | t1 = Translation3(v0) * t1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // transform * quaternion | 
|  | t0.rotate(q1); | 
|  | t1 = t1 * q1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // translation * quaternion | 
|  | t0.translate(v1).rotate(q1); | 
|  | t1 = t1 * (Translation3(v1) * q1); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // aligned scaling * quaternion | 
|  | t0.scale(v1).rotate(q1); | 
|  | t1 = t1 * (AlignedScaling3(v1) * q1); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // quaternion * transform | 
|  | t0.prerotate(q1); | 
|  | t1 = q1 * t1; | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // quaternion * translation | 
|  | t0.rotate(q1).translate(v1); | 
|  | t1 = t1 * (q1 * Translation3(v1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // quaternion * aligned scaling | 
|  | t0.rotate(q1).scale(v1); | 
|  | t1 = t1 * (q1 * AlignedScaling3(v1)); | 
|  | VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
|  |  | 
|  | // translation * vector | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0); | 
|  | VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); | 
|  |  | 
|  | // AlignedScaling * vector | 
|  | t0.setIdentity(); | 
|  | t0.scale(v0); | 
|  | VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1); | 
|  |  | 
|  | // test transform inversion | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0); | 
|  | t0.linear().setRandom(); | 
|  | Matrix4 t044 = Matrix4::Zero(); | 
|  | t044(3,3) = 1; | 
|  | t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); | 
|  | VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0).rotate(q1); | 
|  | t044 = Matrix4::Zero(); | 
|  | t044(3,3) = 1; | 
|  | t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); | 
|  | VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); | 
|  |  | 
|  | // test extract rotation and aligned scaling | 
|  | //   t0.setIdentity(); | 
|  | //   t0.translate(v0).rotate(q1).scale(v1); | 
|  | //   VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1); | 
|  |  | 
|  | Matrix3 mat_rotation, mat_scaling; | 
|  | t0.setIdentity(); | 
|  | t0.translate(v0).rotate(q1).scale(v1); | 
|  | t0.computeRotationScaling(&mat_rotation, &mat_scaling); | 
|  | VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); | 
|  | VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); | 
|  | VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | 
|  | t0.computeScalingRotation(&mat_scaling, &mat_rotation); | 
|  | VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); | 
|  | VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); | 
|  | VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | 
|  |  | 
|  | // test casting | 
|  | Transform<float,3,Mode> t1f = t1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); | 
|  | Transform<double,3,Mode> t1d = t1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); | 
|  |  | 
|  | Translation3 tr1(v0); | 
|  | Translation<float,3> tr1f = tr1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); | 
|  | Translation<double,3> tr1d = tr1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); | 
|  |  | 
|  | AngleAxis<float> aa1f = aa1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); | 
|  | AngleAxis<double> aa1d = aa1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); | 
|  |  | 
|  | Rotation2D<Scalar> r2d1(ei_random<Scalar>()); | 
|  | Rotation2D<float> r2d1f = r2d1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); | 
|  | Rotation2D<double> r2d1d = r2d1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); | 
|  |  | 
|  | } | 
|  |  | 
|  | void test_geo_transformations() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(( transformations<double,Affine>() )); | 
|  | CALL_SUBTEST_2(( transformations<float,AffineCompact>() )); | 
|  | CALL_SUBTEST_3(( transformations<double,Projective>() )); | 
|  | } | 
|  | } |