| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/QR> | 
 |  | 
 | template<typename MatrixType> void householder(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   static bool even = true; | 
 |   even = !even; | 
 |   /* this test covers the following files: | 
 |      Householder.h | 
 |   */ | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
 |   typedef Matrix<Scalar, ei_decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
 |   typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType; | 
 |   typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; | 
 |  | 
 |   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> RightSquareMatrixType; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic> VBlockMatrixType; | 
 |   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType; | 
 |    | 
 |   Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp(std::max(rows,cols)); | 
 |   Scalar* tmp = &_tmp.coeffRef(0,0); | 
 |  | 
 |   Scalar beta; | 
 |   RealScalar alpha; | 
 |   EssentialVectorType essential; | 
 |  | 
 |   VectorType v1 = VectorType::Random(rows), v2; | 
 |   v2 = v1; | 
 |   v1.makeHouseholder(essential, beta, alpha); | 
 |   v1.applyHouseholderOnTheLeft(essential,beta,tmp); | 
 |   VERIFY_IS_APPROX(v1.norm(), v2.norm()); | 
 |   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm()); | 
 |   v1 = VectorType::Random(rows); | 
 |   v2 = v1; | 
 |   v1.applyHouseholderOnTheLeft(essential,beta,tmp); | 
 |   VERIFY_IS_APPROX(v1.norm(), v2.norm()); | 
 |  | 
 |   MatrixType m1(rows, cols), | 
 |              m2(rows, cols); | 
 |  | 
 |   v1 = VectorType::Random(rows); | 
 |   if(even) v1.tail(rows-1).setZero(); | 
 |   m1.colwise() = v1; | 
 |   m2 = m1; | 
 |   m1.col(0).makeHouseholder(essential, beta, alpha); | 
 |   m1.applyHouseholderOnTheLeft(essential,beta,tmp); | 
 |   VERIFY_IS_APPROX(m1.norm(), m2.norm()); | 
 |   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(ei_imag(m1(0,0)), ei_real(m1(0,0))); | 
 |   VERIFY_IS_APPROX(ei_real(m1(0,0)), alpha); | 
 |  | 
 |   v1 = VectorType::Random(rows); | 
 |   if(even) v1.tail(rows-1).setZero(); | 
 |   SquareMatrixType m3(rows,rows), m4(rows,rows); | 
 |   m3.rowwise() = v1.transpose(); | 
 |   m4 = m3; | 
 |   m3.row(0).makeHouseholder(essential, beta, alpha); | 
 |   m3.applyHouseholderOnTheRight(essential,beta,tmp); | 
 |   VERIFY_IS_APPROX(m3.norm(), m4.norm()); | 
 |   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(ei_imag(m3(0,0)), ei_real(m3(0,0))); | 
 |   VERIFY_IS_APPROX(ei_real(m3(0,0)), alpha); | 
 |  | 
 |   // test householder sequence on the left with a shift | 
 |  | 
 |   Index shift = ei_random<Index>(0, std::max<Index>(rows-2,0)); | 
 |   Index brows = rows - shift; | 
 |   m1.setRandom(rows, cols); | 
 |   HBlockMatrixType hbm = m1.block(shift,0,brows,cols); | 
 |   HouseholderQR<HBlockMatrixType> qr(hbm); | 
 |   m2 = m1; | 
 |   m2.block(shift,0,brows,cols) = qr.matrixQR(); | 
 |   HCoeffsVectorType hc = qr.hCoeffs().conjugate(); | 
 |   HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc, false, hc.size(), shift); | 
 |   MatrixType m5 = m2; | 
 |   m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero(); | 
 |   VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly | 
 |   m3 = hseq; | 
 |   VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying | 
 |  | 
 |   // test householder sequence on the right with a shift | 
 |  | 
 |   TMatrixType tm2 = m2.transpose(); | 
 |   HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc, false, hc.size(), shift); | 
 |   VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly | 
 |   m3 = rhseq; | 
 |   VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying | 
 | } | 
 |  | 
 | void test_householder() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( householder(Matrix<double,2,2>()) ); | 
 |     CALL_SUBTEST_2( householder(Matrix<float,2,3>()) ); | 
 |     CALL_SUBTEST_3( householder(Matrix<double,3,5>()) ); | 
 |     CALL_SUBTEST_4( householder(Matrix<float,4,4>()) ); | 
 |     CALL_SUBTEST_5( householder(MatrixXd(10,12)) ); | 
 |     CALL_SUBTEST_6( householder(MatrixXcf(16,17)) ); | 
 |     CALL_SUBTEST_7( householder(MatrixXf(25,7)) ); | 
 |     CALL_SUBTEST_8( householder(Matrix<double,1,1>()) ); | 
 |   } | 
 | } |