|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename VectorType> void map_class_vector(const VectorType& m) | 
|  | { | 
|  | typedef typename VectorType::Index Index; | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  |  | 
|  | Index size = m.size(); | 
|  |  | 
|  | VectorType v = VectorType::Random(size); | 
|  |  | 
|  | Index arraysize = 3*size; | 
|  |  | 
|  | Scalar* array = ei_aligned_new<Scalar>(arraysize); | 
|  |  | 
|  | { | 
|  | Map<VectorType, Aligned, InnerStride<3> > map(array, size); | 
|  | map = v; | 
|  | for(int i = 0; i < size; ++i) | 
|  | { | 
|  | VERIFY(array[3*i] == v[i]); | 
|  | VERIFY(map[i] == v[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); | 
|  | map = v; | 
|  | for(int i = 0; i < size; ++i) | 
|  | { | 
|  | VERIFY(array[2*i] == v[i]); | 
|  | VERIFY(map[i] == v[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | ei_aligned_delete(array, arraysize); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void map_class_matrix(const MatrixType& _m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | Index rows = _m.rows(), cols = _m.cols(); | 
|  |  | 
|  | MatrixType m = MatrixType::Random(rows,cols); | 
|  |  | 
|  | Index arraysize = 2*(rows+4)*(cols+4); | 
|  |  | 
|  | Scalar* array = ei_aligned_new<Scalar>(arraysize); | 
|  |  | 
|  | // test no inner stride and some dynamic outer stride | 
|  | { | 
|  | Map<MatrixType, Aligned, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1)); | 
|  | map = m; | 
|  | VERIFY(map.outerStride() == map.innerSize()+1); | 
|  | for(int i = 0; i < m.outerSize(); ++i) | 
|  | for(int j = 0; j < m.innerSize(); ++j) | 
|  | { | 
|  | VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); | 
|  | VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, | 
|  | // this allows to hit the special case where it's vectorizable. | 
|  | { | 
|  | enum { | 
|  | InnerSize = MatrixType::InnerSizeAtCompileTime, | 
|  | OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4 | 
|  | }; | 
|  | Map<MatrixType, Aligned, OuterStride<OuterStrideAtCompileTime> > | 
|  | map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4)); | 
|  | map = m; | 
|  | VERIFY(map.outerStride() == map.innerSize()+4); | 
|  | for(int i = 0; i < m.outerSize(); ++i) | 
|  | for(int j = 0; j < m.innerSize(); ++j) | 
|  | { | 
|  | VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); | 
|  | VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // test both inner stride and outer stride | 
|  | { | 
|  | Map<MatrixType, Aligned, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2)); | 
|  | map = m; | 
|  | VERIFY(map.outerStride() == 2*map.innerSize()+1); | 
|  | VERIFY(map.innerStride() == 2); | 
|  | for(int i = 0; i < m.outerSize(); ++i) | 
|  | for(int j = 0; j < m.innerSize(); ++j) | 
|  | { | 
|  | VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j)); | 
|  | VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | ei_aligned_delete(array, arraysize); | 
|  | } | 
|  |  | 
|  | void test_mapstride() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( map_class_vector(Vector4d()) ); | 
|  | CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); | 
|  | CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) ); | 
|  | CALL_SUBTEST_5( map_class_vector(VectorXi(12)) ); | 
|  |  | 
|  | CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); | 
|  | CALL_SUBTEST_3( map_class_matrix(Matrix<float,3,5>()) ); | 
|  | CALL_SUBTEST_3( map_class_matrix(Matrix<float,4,8>()) ); | 
|  | CALL_SUBTEST_4( map_class_matrix(MatrixXcf(ei_random<int>(1,10),ei_random<int>(1,10))) ); | 
|  | CALL_SUBTEST_5( map_class_matrix(MatrixXi(5,5)));//ei_random<int>(1,10),ei_random<int>(1,10))) ); | 
|  | } | 
|  | } |