|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | // this hack is needed to make this file compiles with -pedantic (gcc) | 
|  | #ifdef __GNUC__ | 
|  | #define throw(X) | 
|  | #endif | 
|  | // discard stack allocation as that too bypasses malloc | 
|  | #define EIGEN_STACK_ALLOCATION_LIMIT 0 | 
|  | // any heap allocation will raise an assert | 
|  | #define EIGEN_NO_MALLOC | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Cholesky> | 
|  | #include <Eigen/Eigenvalues> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/QR> | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | template<typename MatrixType> void nomalloc(const MatrixType& m) | 
|  | { | 
|  | /* this test check no dynamic memory allocation are issued with fixed-size matrices | 
|  | */ | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Identity(rows, rows), | 
|  | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Random(rows, rows); | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | v2 = VectorType::Random(rows), | 
|  | vzero = VectorType::Zero(rows); | 
|  |  | 
|  | Scalar s1 = ei_random<Scalar>(); | 
|  |  | 
|  | Index r = ei_random<Index>(0, rows-1), | 
|  | c = ei_random<Index>(0, cols-1); | 
|  |  | 
|  | VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2); | 
|  | VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); | 
|  | VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix()); | 
|  | if (MatrixType::RowsAtCompileTime<EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD) { | 
|  | // If the matrices are too large, we have better to use the optimized GEMM | 
|  | // routines which allocates temporaries. However, on some platforms | 
|  | // these temporaries are allocated on the stack using alloca. | 
|  | VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ctms_decompositions() | 
|  | { | 
|  | const int maxSize = 16; | 
|  | const int size    = 12; | 
|  |  | 
|  | typedef Eigen::Matrix<float, | 
|  | Eigen::Dynamic, Eigen::Dynamic, | 
|  | 0, | 
|  | maxSize, maxSize> Matrix; | 
|  |  | 
|  | typedef Eigen::Matrix<float, | 
|  | Eigen::Dynamic, 1, | 
|  | 0, | 
|  | maxSize, 1> Vector; | 
|  |  | 
|  | typedef Eigen::Matrix<std::complex<float>, | 
|  | Eigen::Dynamic, Eigen::Dynamic, | 
|  | 0, | 
|  | maxSize, maxSize> ComplexMatrix; | 
|  |  | 
|  | const Matrix A(Matrix::Random(size, size)); | 
|  | const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); | 
|  | //   const Matrix saA = A.adjoint() * A; // NOTE: This product allocates on the stack. The two following lines are a kludgy workaround | 
|  | Matrix saA(Matrix::Constant(size, size, 1.0)); | 
|  | saA.diagonal().setConstant(2.0); | 
|  |  | 
|  | // Cholesky module | 
|  | Eigen::LLT<Matrix>  LLT;  LLT.compute(A); | 
|  | Eigen::LDLT<Matrix> LDLT; LDLT.compute(A); | 
|  |  | 
|  | // Eigenvalues module | 
|  | Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA); | 
|  | Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA); | 
|  | Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        //cEigSolver.compute(complexA); // NOTE: Commented-out because makes test fail (L135 of ComplexEigenSolver.h has a product that allocates on the stack) | 
|  | Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A); | 
|  | Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA); | 
|  | Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA); | 
|  |  | 
|  | // LU module | 
|  | Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A); | 
|  | Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A); | 
|  |  | 
|  | // QR module | 
|  | Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A); | 
|  | Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A); | 
|  | Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A); | 
|  |  | 
|  | // SVD module | 
|  | Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A); | 
|  | Eigen::SVD<Matrix>       svd;  svd.compute(A); | 
|  | } | 
|  |  | 
|  | void test_nomalloc() | 
|  | { | 
|  | // check that our operator new is indeed called: | 
|  | VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3))); | 
|  | CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2(nomalloc(Matrix4d()) ); | 
|  | CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) ); | 
|  |  | 
|  | // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) | 
|  | CALL_SUBTEST_4(ctms_decompositions()); | 
|  |  | 
|  | } |