| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void product_extra(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::NonInteger NonInteger; | 
 |   typedef Matrix<Scalar, 1, Dynamic> RowVectorType; | 
 |   typedef Matrix<Scalar, Dynamic, 1> ColVectorType; | 
 |   typedef Matrix<Scalar, Dynamic, Dynamic, | 
 |                          MatrixType::Flags&RowMajorBit> OtherMajorMatrixType; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols), | 
 |              mzero = MatrixType::Zero(rows, cols), | 
 |              identity = MatrixType::Identity(rows, rows), | 
 |              square = MatrixType::Random(rows, rows), | 
 |              res = MatrixType::Random(rows, rows), | 
 |              square2 = MatrixType::Random(cols, cols), | 
 |              res2 = MatrixType::Random(cols, cols); | 
 |   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); | 
 |   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | 
 |   OtherMajorMatrixType tm1 = m1; | 
 |  | 
 |   Scalar s1 = ei_random<Scalar>(), | 
 |          s2 = ei_random<Scalar>(), | 
 |          s3 = ei_random<Scalar>(); | 
 |  | 
 | //   int c0 = ei_random<int>(0,cols/2-1), | 
 | //       c1 = ei_random<int>(cols/2,cols), | 
 | //       r0 = ei_random<int>(0,rows/2-1), | 
 | //       r1 = ei_random<int>(rows/2,rows); | 
 |  | 
 |   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval()); | 
 |   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval()); | 
 |   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2); | 
 |   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2); | 
 |   VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval()); | 
 |   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2); | 
 |   VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval()); | 
 |  | 
 |   // a very tricky case where a scale factor has to be automatically conjugated: | 
 |   VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval()); | 
 |  | 
 |  | 
 |   // test all possible conjugate combinations for the four matrix-vector product cases: | 
 |  | 
 |   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), | 
 |                    (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); | 
 |   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), | 
 |                    (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); | 
 |   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), | 
 |                    (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval()); | 
 |  | 
 |   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), | 
 |                    (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval()); | 
 |   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), | 
 |                    (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval()); | 
 |   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), | 
 |                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval()); | 
 |  | 
 |   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), | 
 |                    (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval()); | 
 |   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), | 
 |                    (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
 |   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | 
 |                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
 |  | 
 |   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), | 
 |                    (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); | 
 |   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), | 
 |                    (s1 * v1.conjugate()).eval() * (-m1*s2).eval()); | 
 |   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), | 
 |                    (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval()); | 
 |  | 
 |   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | 
 |                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
 |  | 
 |   // test the vector-matrix product with non aligned starts | 
 |   Index i = ei_random<Index>(0,m1.rows()-2); | 
 |   Index j = ei_random<Index>(0,m1.cols()-2); | 
 |   Index r = ei_random<Index>(1,m1.rows()-i); | 
 |   Index c = ei_random<Index>(1,m1.cols()-j); | 
 |   Index i2 = ei_random<Index>(0,m1.rows()-1); | 
 |   Index j2 = ei_random<Index>(0,m1.cols()-1); | 
 |  | 
 |   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval()); | 
 |   VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval()); | 
 | } | 
 |  | 
 | void test_product_extra() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( product_extra(MatrixXf(ei_random<int>(2,320), ei_random<int>(2,320))) ); | 
 |     CALL_SUBTEST_2( product_extra(MatrixXcf(ei_random<int>(50,50), ei_random<int>(50,50))) ); | 
 |     CALL_SUBTEST_3( product_extra(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(ei_random<int>(2,50), ei_random<int>(2,50))) ); | 
 |   } | 
 | } |