|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void product_selfadjoint(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType; | 
|  |  | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3; | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | v2 = VectorType::Random(rows), | 
|  | v3(rows); | 
|  | RowVectorType r1 = RowVectorType::Random(rows), | 
|  | r2 = RowVectorType::Random(rows); | 
|  | RhsMatrixType m4 = RhsMatrixType::Random(rows,10); | 
|  |  | 
|  | Scalar s1 = ei_random<Scalar>(), | 
|  | s2 = ei_random<Scalar>(), | 
|  | s3 = ei_random<Scalar>(); | 
|  |  | 
|  | m1 = (m1.adjoint() + m1).eval(); | 
|  |  | 
|  | // rank2 update | 
|  | m2 = m1.template triangularView<Lower>(); | 
|  | m2.template selfadjointView<Lower>().rankUpdate(v1,v2); | 
|  | VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix()); | 
|  |  | 
|  | m2 = m1.template triangularView<Upper>(); | 
|  | m2.template selfadjointView<Upper>().rankUpdate(-v1,s2*v2,s3); | 
|  | VERIFY_IS_APPROX(m2, (m1 + (-s2*s3) * (v1 * v2.adjoint()+ v2 * v1.adjoint())).template triangularView<Upper>().toDenseMatrix()); | 
|  |  | 
|  | m2 = m1.template triangularView<Upper>(); | 
|  | m2.template selfadjointView<Upper>().rankUpdate(-r1.adjoint(),r2.adjoint()*s3,s1); | 
|  | VERIFY_IS_APPROX(m2, (m1 + (-s3*s1) * (r1.adjoint() * r2 + r2.adjoint() * r1)).template triangularView<Upper>().toDenseMatrix()); | 
|  |  | 
|  | if (rows>1) | 
|  | { | 
|  | m2 = m1.template triangularView<Lower>(); | 
|  | m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1)); | 
|  | m3 = m1; | 
|  | m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint(); | 
|  | VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_product_selfadjoint() | 
|  | { | 
|  | for(int i = 0; i < g_repeat ; i++) { | 
|  | CALL_SUBTEST_1( product_selfadjoint(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( product_selfadjoint(Matrix<float, 2, 2>()) ); | 
|  | CALL_SUBTEST_3( product_selfadjoint(Matrix3d()) ); | 
|  | CALL_SUBTEST_4( product_selfadjoint(MatrixXcf(4, 4)) ); | 
|  | CALL_SUBTEST_5( product_selfadjoint(MatrixXcd(21,21)) ); | 
|  | CALL_SUBTEST_6( product_selfadjoint(MatrixXd(14,14)) ); | 
|  | CALL_SUBTEST_7( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(17,17)) ); | 
|  | CALL_SUBTEST_8( product_selfadjoint(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(19, 19)) ); | 
|  | } | 
|  | } |