|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void matrixRedux(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); | 
|  | VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy | 
|  | Scalar s(0), p(1), minc(ei_real(m1.coeff(0))), maxc(ei_real(m1.coeff(0))); | 
|  | for(int j = 0; j < cols; j++) | 
|  | for(int i = 0; i < rows; i++) | 
|  | { | 
|  | s += m1(i,j); | 
|  | p *= m1(i,j); | 
|  | minc = std::min(ei_real(minc), ei_real(m1(i,j))); | 
|  | maxc = std::max(ei_real(maxc), ei_real(m1(i,j))); | 
|  | } | 
|  | const Scalar mean = s/Scalar(RealScalar(rows*cols)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.sum(), s); | 
|  | VERIFY_IS_APPROX(m1.mean(), mean); | 
|  | VERIFY_IS_APPROX(m1.prod(), p); | 
|  | VERIFY_IS_APPROX(m1.real().minCoeff(), ei_real(minc)); | 
|  | VERIFY_IS_APPROX(m1.real().maxCoeff(), ei_real(maxc)); | 
|  |  | 
|  | // test slice vectorization assuming assign is ok | 
|  | Index r0 = ei_random<Index>(0,rows-1); | 
|  | Index c0 = ei_random<Index>(0,cols-1); | 
|  | Index r1 = ei_random<Index>(r0+1,rows)-r0; | 
|  | Index c1 = ei_random<Index>(c0+1,cols)-c0; | 
|  | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); | 
|  | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); | 
|  | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).prod(), m1.block(r0,c0,r1,c1).eval().prod()); | 
|  | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); | 
|  | VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); | 
|  | } | 
|  |  | 
|  | template<typename VectorType> void vectorRedux(const VectorType& w) | 
|  | { | 
|  | typedef typename VectorType::Index Index; | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | Index size = w.size(); | 
|  |  | 
|  | VectorType v = VectorType::Random(size); | 
|  | for(int i = 1; i < size; i++) | 
|  | { | 
|  | Scalar s(0), p(1); | 
|  | RealScalar minc(ei_real(v.coeff(0))), maxc(ei_real(v.coeff(0))); | 
|  | for(int j = 0; j < i; j++) | 
|  | { | 
|  | s += v[j]; | 
|  | p *= v[j]; | 
|  | minc = std::min(minc, ei_real(v[j])); | 
|  | maxc = std::max(maxc, ei_real(v[j])); | 
|  | } | 
|  | VERIFY_IS_APPROX(s, v.head(i).sum()); | 
|  | VERIFY_IS_APPROX(p, v.head(i).prod()); | 
|  | VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); | 
|  | VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < size-1; i++) | 
|  | { | 
|  | Scalar s(0), p(1); | 
|  | RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i))); | 
|  | for(int j = i; j < size; j++) | 
|  | { | 
|  | s += v[j]; | 
|  | p *= v[j]; | 
|  | minc = std::min(minc, ei_real(v[j])); | 
|  | maxc = std::max(maxc, ei_real(v[j])); | 
|  | } | 
|  | VERIFY_IS_APPROX(s, v.tail(size-i).sum()); | 
|  | VERIFY_IS_APPROX(p, v.tail(size-i).prod()); | 
|  | VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); | 
|  | VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < size/2; i++) | 
|  | { | 
|  | Scalar s(0), p(1); | 
|  | RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i))); | 
|  | for(int j = i; j < size-i; j++) | 
|  | { | 
|  | s += v[j]; | 
|  | p *= v[j]; | 
|  | minc = std::min(minc, ei_real(v[j])); | 
|  | maxc = std::max(maxc, ei_real(v[j])); | 
|  | } | 
|  | VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum()); | 
|  | VERIFY_IS_APPROX(p, v.segment(i, size-2*i).prod()); | 
|  | VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); | 
|  | VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_redux() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); | 
|  | CALL_SUBTEST_2( matrixRedux(Array2f()) ); | 
|  | CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); | 
|  | CALL_SUBTEST_3( matrixRedux(Array4d()) ); | 
|  | CALL_SUBTEST_4( matrixRedux(MatrixXcf(3, 3)) ); | 
|  | CALL_SUBTEST_4( matrixRedux(ArrayXXcf(3, 3)) ); | 
|  | CALL_SUBTEST_5( matrixRedux(MatrixXd(8, 12)) ); | 
|  | CALL_SUBTEST_5( matrixRedux(ArrayXXd(8, 12)) ); | 
|  | CALL_SUBTEST_6( matrixRedux(MatrixXi(8, 12)) ); | 
|  | CALL_SUBTEST_6( matrixRedux(ArrayXXi(8, 12)) ); | 
|  | } | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_7( vectorRedux(Vector4f()) ); | 
|  | CALL_SUBTEST_7( vectorRedux(Array4f()) ); | 
|  | CALL_SUBTEST_5( vectorRedux(VectorXd(10)) ); | 
|  | CALL_SUBTEST_5( vectorRedux(ArrayXd(10)) ); | 
|  | CALL_SUBTEST_8( vectorRedux(VectorXf(33)) ); | 
|  | CALL_SUBTEST_8( vectorRedux(ArrayXf(33)) ); | 
|  | } | 
|  | } |