|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. Eigen itself is part of the KDE project. | 
|  | // | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <limits> | 
|  | #include <Eigen/Eigenvalues> | 
|  |  | 
|  | template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime) | 
|  | { | 
|  | typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; | 
|  | typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType; | 
|  |  | 
|  | // Test basic functionality: T is triangular and A = U T U* | 
|  | for(int counter = 0; counter < g_repeat; ++counter) { | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | ComplexSchur<MatrixType> schurOfA(A); | 
|  | VERIFY_IS_EQUAL(schurOfA.info(), Success); | 
|  | ComplexMatrixType U = schurOfA.matrixU(); | 
|  | ComplexMatrixType T = schurOfA.matrixT(); | 
|  | for(int row = 1; row < size; ++row) { | 
|  | for(int col = 0; col < row; ++col) { | 
|  | VERIFY(T(row,col) == (typename MatrixType::Scalar)0); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint()); | 
|  | } | 
|  |  | 
|  | // Test asserts when not initialized | 
|  | ComplexSchur<MatrixType> csUninitialized; | 
|  | VERIFY_RAISES_ASSERT(csUninitialized.matrixT()); | 
|  | VERIFY_RAISES_ASSERT(csUninitialized.matrixU()); | 
|  | VERIFY_RAISES_ASSERT(csUninitialized.info()); | 
|  |  | 
|  | // Test whether compute() and constructor returns same result | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | ComplexSchur<MatrixType> cs1; | 
|  | cs1.compute(A); | 
|  | ComplexSchur<MatrixType> cs2(A); | 
|  | VERIFY_IS_EQUAL(cs1.info(), Success); | 
|  | VERIFY_IS_EQUAL(cs2.info(), Success); | 
|  | VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT()); | 
|  | VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU()); | 
|  |  | 
|  | // Test computation of only T, not U | 
|  | ComplexSchur<MatrixType> csOnlyT(A, false); | 
|  | VERIFY_IS_EQUAL(csOnlyT.info(), Success); | 
|  | VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT()); | 
|  | VERIFY_RAISES_ASSERT(csOnlyT.matrixU()); | 
|  |  | 
|  | if (size > 1) | 
|  | { | 
|  | // Test matrix with NaN | 
|  | A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | 
|  | ComplexSchur<MatrixType> csNaN(A); | 
|  | VERIFY_IS_EQUAL(csNaN.info(), NoConvergence); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_schur_complex() | 
|  | { | 
|  | CALL_SUBTEST_1(( schur<Matrix4cd>() )); | 
|  | CALL_SUBTEST_2(( schur<MatrixXcf>(ei_random<int>(1,50)) )); | 
|  | CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() )); | 
|  | CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() )); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10)); | 
|  | } |