|  | // This file is triangularView of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | // This file tests the basic selfadjointView API, | 
|  | // the related products and decompositions are tested in specific files. | 
|  |  | 
|  | template<typename MatrixType> void selfadjoint(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols); | 
|  |  | 
|  | m1.diagonal() = m1.diagonal().real().template cast<Scalar>(); | 
|  |  | 
|  | // check selfadjoint to dense | 
|  | m3 = m1.template selfadjointView<Upper>(); | 
|  | VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Upper>()), MatrixType(m1.template triangularView<Upper>())); | 
|  | VERIFY_IS_APPROX(m3, m3.adjoint()); | 
|  |  | 
|  |  | 
|  | m3 = m1.template selfadjointView<Lower>(); | 
|  | VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Lower>()), MatrixType(m1.template triangularView<Lower>())); | 
|  | VERIFY_IS_APPROX(m3, m3.adjoint()); | 
|  | } | 
|  |  | 
|  | void test_selfadjoint() | 
|  | { | 
|  | for(int i = 0; i < g_repeat ; i++) | 
|  | { | 
|  | int s = ei_random<int>(1,20); EIGEN_UNUSED_VARIABLE(s); | 
|  |  | 
|  | CALL_SUBTEST_1( selfadjoint(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( selfadjoint(Matrix<float, 2, 2>()) ); | 
|  | CALL_SUBTEST_3( selfadjoint(Matrix3cf()) ); | 
|  | CALL_SUBTEST_4( selfadjoint(MatrixXcd(s,s)) ); | 
|  | CALL_SUBTEST_5( selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s, s)) ); | 
|  | } | 
|  | } |