|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_MATRIX_FUNCTION_ATOMIC | 
|  | #define EIGEN_MATRIX_FUNCTION_ATOMIC | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * \class MatrixFunctionAtomic | 
|  | * \brief Helper class for computing matrix functions of atomic matrices. | 
|  | * | 
|  | * \internal | 
|  | * Here, an atomic matrix is a triangular matrix whose diagonal | 
|  | * entries are close to each other. | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | class MatrixFunctionAtomic | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef typename ei_stem_function<Scalar>::type StemFunction; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | /** \brief Constructor | 
|  | * \param[in]  f  matrix function to compute. | 
|  | */ | 
|  | MatrixFunctionAtomic(StemFunction f) : m_f(f) { } | 
|  |  | 
|  | /** \brief Compute matrix function of atomic matrix | 
|  | * \param[in]  A  argument of matrix function, should be upper triangular and atomic | 
|  | * \returns  f(A), the matrix function evaluated at the given matrix | 
|  | */ | 
|  | MatrixType compute(const MatrixType& A); | 
|  |  | 
|  | private: | 
|  |  | 
|  | // Prevent copying | 
|  | MatrixFunctionAtomic(const MatrixFunctionAtomic&); | 
|  | MatrixFunctionAtomic& operator=(const MatrixFunctionAtomic&); | 
|  |  | 
|  | void computeMu(); | 
|  | bool taylorConverged(Index s, const MatrixType& F, const MatrixType& Fincr, const MatrixType& P); | 
|  |  | 
|  | /** \brief Pointer to scalar function */ | 
|  | StemFunction* m_f; | 
|  |  | 
|  | /** \brief Size of matrix function */ | 
|  | Index m_Arows; | 
|  |  | 
|  | /** \brief Mean of eigenvalues */ | 
|  | Scalar m_avgEival; | 
|  |  | 
|  | /** \brief Argument shifted by mean of eigenvalues */ | 
|  | MatrixType m_Ashifted; | 
|  |  | 
|  | /** \brief Constant used to determine whether Taylor series has converged */ | 
|  | RealScalar m_mu; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A) | 
|  | { | 
|  | // TODO: Use that A is upper triangular | 
|  | m_Arows = A.rows(); | 
|  | m_avgEival = A.trace() / Scalar(RealScalar(m_Arows)); | 
|  | m_Ashifted = A - m_avgEival * MatrixType::Identity(m_Arows, m_Arows); | 
|  | computeMu(); | 
|  | MatrixType F = m_f(m_avgEival, 0) * MatrixType::Identity(m_Arows, m_Arows); | 
|  | MatrixType P = m_Ashifted; | 
|  | MatrixType Fincr; | 
|  | for (Index s = 1; s < 1.1 * m_Arows + 10; s++) { // upper limit is fairly arbitrary | 
|  | Fincr = m_f(m_avgEival, static_cast<int>(s)) * P; | 
|  | F += Fincr; | 
|  | P = Scalar(RealScalar(1.0/(s + 1))) * P * m_Ashifted; | 
|  | if (taylorConverged(s, F, Fincr, P)) { | 
|  | return F; | 
|  | } | 
|  | } | 
|  | ei_assert("Taylor series does not converge" && 0); | 
|  | return F; | 
|  | } | 
|  |  | 
|  | /** \brief Compute \c m_mu. */ | 
|  | template <typename MatrixType> | 
|  | void MatrixFunctionAtomic<MatrixType>::computeMu() | 
|  | { | 
|  | const MatrixType N = MatrixType::Identity(m_Arows, m_Arows) - m_Ashifted; | 
|  | VectorType e = VectorType::Ones(m_Arows); | 
|  | N.template triangularView<Upper>().solveInPlace(e); | 
|  | m_mu = e.cwiseAbs().maxCoeff(); | 
|  | } | 
|  |  | 
|  | /** \brief Determine whether Taylor series has converged */ | 
|  | template <typename MatrixType> | 
|  | bool MatrixFunctionAtomic<MatrixType>::taylorConverged(Index s, const MatrixType& F, | 
|  | const MatrixType& Fincr, const MatrixType& P) | 
|  | { | 
|  | const Index n = F.rows(); | 
|  | const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff(); | 
|  | const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff(); | 
|  | if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) { | 
|  | RealScalar delta = 0; | 
|  | RealScalar rfactorial = 1; | 
|  | for (Index r = 0; r < n; r++) { | 
|  | RealScalar mx = 0; | 
|  | for (Index i = 0; i < n; i++) | 
|  | mx = std::max(mx, std::abs(m_f(m_Ashifted(i, i) + m_avgEival, static_cast<int>(s+r)))); | 
|  | if (r != 0) | 
|  | rfactorial *= RealScalar(r); | 
|  | delta = std::max(delta, mx / rfactorial); | 
|  | } | 
|  | const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff(); | 
|  | if (m_mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_MATRIX_FUNCTION_ATOMIC |