|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/AlignedVector3> | 
|  |  | 
|  | template<typename Scalar> | 
|  | void alignedvector3() | 
|  | { | 
|  | Scalar s1 = ei_random<Scalar>(); | 
|  | Scalar s2 = ei_random<Scalar>(); | 
|  | typedef Matrix<Scalar,3,1> RefType; | 
|  | typedef Matrix<Scalar,3,3> Mat33; | 
|  | typedef AlignedVector3<Scalar> FastType; | 
|  | RefType  r1(RefType::Random()), r2(RefType::Random()), r3(RefType::Random()), | 
|  | r4(RefType::Random()), r5(RefType::Random()), r6(RefType::Random()); | 
|  | FastType f1(r1), f2(r2), f3(r3), f4(r4), f5(r5), f6(r6); | 
|  | Mat33 m1(Mat33::Random()); | 
|  |  | 
|  | VERIFY_IS_APPROX(f1,r1); | 
|  | VERIFY_IS_APPROX(f4,r4); | 
|  |  | 
|  | VERIFY_IS_APPROX(f4+f1,r4+r1); | 
|  | VERIFY_IS_APPROX(f4-f1,r4-r1); | 
|  | VERIFY_IS_APPROX(f4+f1-f2,r4+r1-r2); | 
|  | VERIFY_IS_APPROX(f4+=f3,r4+=r3); | 
|  | VERIFY_IS_APPROX(f4-=f5,r4-=r5); | 
|  | VERIFY_IS_APPROX(f4-=f5+f1,r4-=r5+r1); | 
|  | VERIFY_IS_APPROX(f5+f1-s1*f2,r5+r1-s1*r2); | 
|  | VERIFY_IS_APPROX(f5+f1/s2-s1*f2,r5+r1/s2-s1*r2); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1*f4,m1*r4); | 
|  | VERIFY_IS_APPROX(f4.transpose()*m1,r4.transpose()*m1); | 
|  |  | 
|  | VERIFY_IS_APPROX(f2.dot(f3),r2.dot(r3)); | 
|  | VERIFY_IS_APPROX(f2.cross(f3),r2.cross(r3)); | 
|  | VERIFY_IS_APPROX(f2.norm(),r2.norm()); | 
|  |  | 
|  | VERIFY_IS_APPROX(f2.normalized(),r2.normalized()); | 
|  |  | 
|  | VERIFY_IS_APPROX((f2+f1).normalized(),(r2+r1).normalized()); | 
|  |  | 
|  | f2.normalize(); | 
|  | r2.normalize(); | 
|  | VERIFY_IS_APPROX(f2,r2); | 
|  | } | 
|  |  | 
|  | void test_alignedvector3() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST( alignedvector3<float>() ); | 
|  | } | 
|  | } |