| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| template<typename EigType,typename MatType> |
| void check_eigensolver_for_given_mat(const EigType &eig, const MatType& a) |
| { |
| typedef typename NumTraits<typename MatType::Scalar>::Real RealScalar; |
| typedef Matrix<RealScalar, MatType::RowsAtCompileTime, 1> RealVectorType; |
| typedef typename std::complex<RealScalar> Complex; |
| Index n = a.rows(); |
| VERIFY_IS_EQUAL(eig.info(), Success); |
| VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()); |
| VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(), |
| eig.eigenvectors() * eig.eigenvalues().asDiagonal()); |
| VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose()); |
| VERIFY_IS_APPROX(a.eigenvalues(), eig.eigenvalues()); |
| } |
| |
| template<typename MatrixType> void eigensolver(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| EigenSolver.h |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename std::complex<RealScalar> Complex; |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| MatrixType a1 = MatrixType::Random(rows,cols); |
| MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
| |
| EigenSolver<MatrixType> ei0(symmA); |
| VERIFY_IS_EQUAL(ei0.info(), Success); |
| VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); |
| VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), |
| (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); |
| |
| EigenSolver<MatrixType> ei1(a); |
| CALL_SUBTEST( check_eigensolver_for_given_mat(ei1,a) ); |
| |
| EigenSolver<MatrixType> ei2; |
| ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); |
| VERIFY_IS_EQUAL(ei2.info(), Success); |
| VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); |
| VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); |
| if (rows > 2) { |
| ei2.setMaxIterations(1).compute(a); |
| VERIFY_IS_EQUAL(ei2.info(), NoConvergence); |
| VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); |
| } |
| |
| EigenSolver<MatrixType> eiNoEivecs(a, false); |
| VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
| VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
| VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix()); |
| |
| MatrixType id = MatrixType::Identity(rows, cols); |
| VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
| |
| if (rows > 2 && rows < 20) |
| { |
| // Test matrix with NaN |
| a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| EigenSolver<MatrixType> eiNaN(a); |
| VERIFY_IS_NOT_EQUAL(eiNaN.info(), Success); |
| } |
| |
| // regression test for bug 1098 |
| { |
| EigenSolver<MatrixType> eig(a.adjoint() * a); |
| eig.compute(a.adjoint() * a); |
| } |
| |
| // regression test for bug 478 |
| { |
| a.setZero(); |
| EigenSolver<MatrixType> ei3(a); |
| VERIFY_IS_EQUAL(ei3.info(), Success); |
| VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); |
| VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); |
| } |
| } |
| |
| template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) |
| { |
| EigenSolver<MatrixType> eig; |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); |
| VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| |
| MatrixType a = MatrixType::Random(m.rows(),m.cols()); |
| eig.compute(a, false); |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); |
| } |
| |
| |
| template<typename CoeffType> |
| Matrix<typename CoeffType::Scalar,Dynamic,Dynamic> |
| make_companion(const CoeffType& coeffs) |
| { |
| Index n = coeffs.size()-1; |
| Matrix<typename CoeffType::Scalar,Dynamic,Dynamic> res(n,n); |
| res.setZero(); |
| res.row(0) = -coeffs.tail(n) / coeffs(0); |
| res.diagonal(-1).setOnes(); |
| return res; |
| } |
| |
| template<int> |
| void eigensolver_generic_extra() |
| { |
| { |
| // regression test for bug 793 |
| MatrixXd a(3,3); |
| a << 0, 0, 1, |
| 1, 1, 1, |
| 1, 1e+200, 1; |
| Eigen::EigenSolver<MatrixXd> eig(a); |
| double scale = 1e-200; // scale to avoid overflow during the comparisons |
| VERIFY_IS_APPROX(a * eig.pseudoEigenvectors()*scale, eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()*scale); |
| VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()*scale); |
| } |
| { |
| // check a case where all eigenvalues are null. |
| MatrixXd a(2,2); |
| a << 1, 1, |
| -1, -1; |
| Eigen::EigenSolver<MatrixXd> eig(a); |
| VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.); |
| VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm()+1., 1.); |
| VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm()+1., 1.); |
| VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.); |
| VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.); |
| } |
| |
| // regression test for bug 933 |
| { |
| { |
| VectorXd coeffs(5); coeffs << 1, -3, -175, -225, 2250; |
| MatrixXd C = make_companion(coeffs); |
| EigenSolver<MatrixXd> eig(C); |
| CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) ); |
| } |
| { |
| // this test is tricky because it requires high accuracy in smallest eigenvalues |
| VectorXd coeffs(5); coeffs << 6.154671e-15, -1.003870e-10, -9.819570e-01, 3.995715e+03, 2.211511e+08; |
| MatrixXd C = make_companion(coeffs); |
| EigenSolver<MatrixXd> eig(C); |
| CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) ); |
| Index n = C.rows(); |
| for(Index i=0;i<n;++i) |
| { |
| typedef std::complex<double> Complex; |
| MatrixXcd ac = C.cast<Complex>(); |
| ac.diagonal().array() -= eig.eigenvalues()(i); |
| VectorXd sv = ac.jacobiSvd().singularValues(); |
| // comparing to sv(0) is not enough here to catch the "bug", |
| // the hard-coded 1.0 is important! |
| VERIFY_IS_MUCH_SMALLER_THAN(sv(n-1), 1.0); |
| } |
| } |
| } |
| // regression test for bug 1557 |
| { |
| // this test is interesting because it contains zeros on the diagonal. |
| MatrixXd A_bug1557(3,3); |
| A_bug1557 << 0, 0, 0, 1, 0, 0.5887907064808635127, 0, 1, 0; |
| EigenSolver<MatrixXd> eig(A_bug1557); |
| CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1557) ); |
| } |
| |
| // regression test for bug 1174 |
| { |
| Index n = 12; |
| MatrixXf A_bug1174(n,n); |
| A_bug1174 << 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432, |
| 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432, |
| 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432, |
| 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432, |
| 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, |
| 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, |
| 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, |
| 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, |
| 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, |
| 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, |
| 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, |
| 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0; |
| EigenSolver<MatrixXf> eig(A_bug1174); |
| CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1174) ); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(eigensolver_generic) |
| { |
| int s = 0; |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( eigensolver(Matrix4f()) ); |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| |
| // some trivial but implementation-wise tricky cases |
| CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); |
| CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); |
| CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_4( eigensolver(Matrix2d()) ); |
| } |
| |
| CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) ); |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) ); |
| CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) ); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s)); |
| |
| // regression test for bug 410 |
| CALL_SUBTEST_2( |
| { |
| MatrixXd A(1,1); |
| A(0,0) = std::sqrt(-1.); // is Not-a-Number |
| Eigen::EigenSolver<MatrixXd> solver(A); |
| VERIFY_IS_EQUAL(solver.info(), NumericalIssue); |
| } |
| ); |
| |
| CALL_SUBTEST_2( eigensolver_generic_extra<0>() ); |
| |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |