| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2021 The Eigen Team. |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // The following is an example GPU test. |
| |
| #define EIGEN_USE_GPU |
| #include "main.h" // Include the main test utilities. |
| |
| // Define a kernel functor. |
| // |
| // The kernel must be a POD type and implement operator(). |
| struct AddKernel { |
| // Parameters must be POD or serializable Eigen types (e.g. Matrix, |
| // Array). The return value must be a POD or serializable value type. |
| template<typename Type1, typename Type2, typename Type3> |
| EIGEN_DEVICE_FUNC |
| Type3 operator()(const Type1& A, const Type2& B, Type3& C) const { |
| C = A + B; // Populate output parameter. |
| Type3 D = A + B; // Populate return value. |
| return D; |
| } |
| }; |
| |
| // Define a sub-test that uses the kernel. |
| template <typename T> |
| void test_add(const T& type) { |
| const Index rows = type.rows(); |
| const Index cols = type.cols(); |
| |
| // Create random inputs. |
| const T A = T::Random(rows, cols); |
| const T B = T::Random(rows, cols); |
| T C; // Output parameter. |
| |
| // Create kernel. |
| AddKernel add_kernel; |
| |
| // Run add_kernel(A, B, C) via run(...). |
| // This will run on the GPU if using a GPU compiler, or CPU otherwise, |
| // facilitating generic tests that can run on either. |
| T D = run(add_kernel, A, B, C); |
| |
| // Check that both output parameter and return value are correctly populated. |
| const T expected = A + B; |
| VERIFY_IS_CWISE_EQUAL(C, expected); |
| VERIFY_IS_CWISE_EQUAL(D, expected); |
| |
| // In a GPU-only test, we can verify that the CPU and GPU produce the |
| // same results. |
| T C_cpu, C_gpu; |
| T D_cpu = run_on_cpu(add_kernel, A, B, C_cpu); // Runs on CPU. |
| T D_gpu = run_on_gpu(add_kernel, A, B, C_gpu); // Runs on GPU. |
| VERIFY_IS_CWISE_EQUAL(C_cpu, C_gpu); |
| VERIFY_IS_CWISE_EQUAL(D_cpu, D_gpu); |
| }; |
| |
| struct MultiplyKernel { |
| template<typename Type1, typename Type2, typename Type3> |
| EIGEN_DEVICE_FUNC |
| Type3 operator()(const Type1& A, const Type2& B, Type3& C) const { |
| C = A * B; |
| return A * B; |
| } |
| }; |
| |
| template <typename T1, typename T2, typename T3> |
| void test_multiply(const T1& type1, const T2& type2, const T3& type3) { |
| const T1 A = T1::Random(type1.rows(), type1.cols()); |
| const T2 B = T2::Random(type2.rows(), type2.cols()); |
| T3 C; |
| |
| MultiplyKernel multiply_kernel; |
| |
| // The run(...) family of functions uses a memory buffer to transfer data back |
| // and forth to and from the device. The size of this buffer is estimated |
| // from the size of all input parameters. If the estimated buffer size is |
| // not sufficient for transferring outputs from device-to-host, then an |
| // explicit buffer size needs to be specified. |
| |
| // 2 outputs of size (A * B). For each matrix output, the buffer will store |
| // the number of rows, columns, and the data. |
| size_t buffer_capacity_hint = 2 * ( // 2 output parameters |
| 2 * sizeof(typename T3::Index) // # Rows, # Cols |
| + A.rows() * B.cols() * sizeof(typename T3::Scalar)); // Output data |
| |
| T3 D = run_with_hint(buffer_capacity_hint, multiply_kernel, A, B, C); |
| |
| const T3 expected = A * B; |
| VERIFY_IS_CWISE_APPROX(C, expected); |
| VERIFY_IS_CWISE_APPROX(D, expected); |
| |
| T3 C_cpu, C_gpu; |
| T3 D_cpu = run_on_cpu(multiply_kernel, A, B, C_cpu); |
| T3 D_gpu = run_on_gpu_with_hint(buffer_capacity_hint, |
| multiply_kernel, A, B, C_gpu); |
| VERIFY_IS_CWISE_APPROX(C_cpu, C_gpu); |
| VERIFY_IS_CWISE_APPROX(D_cpu, D_gpu); |
| } |
| |
| // Declare the test fixture. |
| EIGEN_DECLARE_TEST(gpu_example) |
| { |
| // For the number of repeats, call the desired subtests. |
| for(int i = 0; i < g_repeat; i++) { |
| // Call subtests with different sized/typed inputs. |
| CALL_SUBTEST( test_add(Eigen::Vector3f()) ); |
| CALL_SUBTEST( test_add(Eigen::Matrix3d()) ); |
| CALL_SUBTEST( test_add(Eigen::MatrixX<int>(10, 10)) ); |
| |
| CALL_SUBTEST( test_add(Eigen::Array44f()) ); |
| CALL_SUBTEST( test_add(Eigen::ArrayXd(20)) ); |
| CALL_SUBTEST( test_add(Eigen::ArrayXXi(13, 17)) ); |
| |
| CALL_SUBTEST( test_multiply(Eigen::Matrix3d(), |
| Eigen::Matrix3d(), |
| Eigen::Matrix3d()) ); |
| CALL_SUBTEST( test_multiply(Eigen::MatrixX<int>(10, 10), |
| Eigen::MatrixX<int>(10, 10), |
| Eigen::MatrixX<int>()) ); |
| CALL_SUBTEST( test_multiply(Eigen::MatrixXf(12, 1), |
| Eigen::MatrixXf(1, 32), |
| Eigen::MatrixXf()) ); |
| } |
| } |