| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m) |
| { |
| typedef typename VectorType::Scalar Scalar; |
| |
| Index size = m.size(); |
| |
| VectorType v = VectorType::Random(size); |
| |
| Index arraysize = 3*size; |
| |
| Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1); |
| Scalar* array = a_array; |
| if(Alignment!=Aligned) |
| array = (Scalar*)(std::intptr_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); |
| |
| { |
| Map<VectorType, Alignment, InnerStride<3> > map(array, size); |
| map = v; |
| for(int i = 0; i < size; ++i) |
| { |
| VERIFY_IS_EQUAL(array[3*i], v[i]); |
| VERIFY_IS_EQUAL(map[i], v[i]); |
| } |
| } |
| |
| { |
| Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); |
| map = v; |
| for(int i = 0; i < size; ++i) |
| { |
| VERIFY_IS_EQUAL(array[2*i], v[i]); |
| VERIFY_IS_EQUAL(map[i], v[i]); |
| } |
| } |
| |
| internal::aligned_delete(a_array, arraysize+1); |
| } |
| |
| template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = _m.rows(), cols = _m.cols(); |
| |
| MatrixType m = MatrixType::Random(rows,cols); |
| Scalar s1 = internal::random<Scalar>(); |
| |
| Index arraysize = 4*(rows+4)*(cols+4); |
| |
| Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize+1); |
| Scalar* array1 = a_array1; |
| if(Alignment!=Aligned) |
| array1 = (Scalar*)(std::intptr_t(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); |
| |
| Scalar a_array2[256]; |
| Scalar* array2 = a_array2; |
| if(Alignment!=Aligned) { |
| array2 = (Scalar*)(std::intptr_t(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); |
| } else { |
| // In case there is no alignment, default to pointing to the start. |
| constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); |
| array2 = (Scalar*)(((std::uintptr_t(a_array2)+alignment-1)/alignment)*alignment); |
| } |
| Index maxsize2 = a_array2 - array2 + 256; |
| |
| // test no inner stride and some dynamic outer stride |
| for(int k=0; k<2; ++k) |
| { |
| if(k==1 && (m.innerSize()+1)*m.outerSize() > maxsize2) |
| break; |
| Scalar* array = (k==0 ? array1 : array2); |
| |
| Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1)); |
| map = m; |
| VERIFY(map.outerStride() == map.innerSize()+1); |
| for(int i = 0; i < m.outerSize(); ++i) |
| for(int j = 0; j < m.innerSize(); ++j) |
| { |
| VERIFY_IS_EQUAL(array[map.outerStride()*i+j], m.coeffByOuterInner(i,j)); |
| VERIFY_IS_EQUAL(map.coeffByOuterInner(i,j), m.coeffByOuterInner(i,j)); |
| } |
| VERIFY_IS_APPROX(s1*map,s1*m); |
| map *= s1; |
| VERIFY_IS_APPROX(map,s1*m); |
| } |
| |
| // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, |
| // this allows to hit the special case where it's vectorizable. |
| for(int k=0; k<2; ++k) |
| { |
| if(k==1 && (m.innerSize()+4)*m.outerSize() > maxsize2) |
| break; |
| Scalar* array = (k==0 ? array1 : array2); |
| |
| enum { |
| InnerSize = MatrixType::InnerSizeAtCompileTime, |
| OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4 |
| }; |
| Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> > |
| map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4)); |
| map = m; |
| VERIFY(map.outerStride() == map.innerSize()+4); |
| for(int i = 0; i < m.outerSize(); ++i) |
| for(int j = 0; j < m.innerSize(); ++j) |
| { |
| VERIFY_IS_EQUAL(array[map.outerStride()*i+j], m.coeffByOuterInner(i,j)); |
| VERIFY_IS_EQUAL(map.coeffByOuterInner(i,j), m.coeffByOuterInner(i,j)); |
| } |
| VERIFY_IS_APPROX(s1*map,s1*m); |
| map *= s1; |
| VERIFY_IS_APPROX(map,s1*m); |
| } |
| |
| // test both inner stride and outer stride |
| for(int k=0; k<2; ++k) |
| { |
| if(k==1 && (2*m.innerSize()+1)*(m.outerSize()*2) > maxsize2) |
| break; |
| Scalar* array = (k==0 ? array1 : array2); |
| |
| Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2)); |
| map = m; |
| VERIFY(map.outerStride() == 2*map.innerSize()+1); |
| VERIFY(map.innerStride() == 2); |
| for(int i = 0; i < m.outerSize(); ++i) |
| for(int j = 0; j < m.innerSize(); ++j) |
| { |
| VERIFY_IS_EQUAL(array[map.outerStride()*i+map.innerStride()*j], m.coeffByOuterInner(i,j)); |
| VERIFY_IS_EQUAL(map.coeffByOuterInner(i,j), m.coeffByOuterInner(i,j)); |
| } |
| VERIFY_IS_APPROX(s1*map,s1*m); |
| map *= s1; |
| VERIFY_IS_APPROX(map,s1*m); |
| } |
| |
| // test inner stride and no outer stride |
| for(int k=0; k<2; ++k) |
| { |
| if(k==1 && (m.innerSize()*2)*m.outerSize() > maxsize2) |
| break; |
| Scalar* array = (k==0 ? array1 : array2); |
| |
| Map<MatrixType, Alignment, InnerStride<Dynamic> > map(array, rows, cols, InnerStride<Dynamic>(2)); |
| map = m; |
| VERIFY(map.outerStride() == map.innerSize()*2); |
| for(int i = 0; i < m.outerSize(); ++i) |
| for(int j = 0; j < m.innerSize(); ++j) |
| { |
| VERIFY_IS_EQUAL(array[map.innerSize()*i*2+j*2], m.coeffByOuterInner(i,j)); |
| VERIFY_IS_EQUAL(map.coeffByOuterInner(i,j), m.coeffByOuterInner(i,j)); |
| } |
| VERIFY_IS_APPROX(s1*map,s1*m); |
| map *= s1; |
| VERIFY_IS_APPROX(map,s1*m); |
| } |
| |
| // test negative strides |
| { |
| Matrix<Scalar,Dynamic,1>::Map(a_array1, arraysize+1).setRandom(); |
| Index outerstride = m.innerSize()+4; |
| Scalar* array = array1; |
| |
| { |
| Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride)); |
| Map<MatrixType, Unaligned, OuterStride<> > map2(array+(m.outerSize()-1)*outerstride, rows, cols, OuterStride<>(-outerstride)); |
| if(MatrixType::IsRowMajor) VERIFY_IS_APPROX(map1.colwise().reverse(), map2); |
| else VERIFY_IS_APPROX(map1.rowwise().reverse(), map2); |
| } |
| |
| { |
| Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride)); |
| Map<MatrixType, Unaligned, Stride<Dynamic,Dynamic> > map2(array+(m.outerSize()-1)*outerstride+m.innerSize()-1, rows, cols, Stride<Dynamic,Dynamic>(-outerstride,-1)); |
| VERIFY_IS_APPROX(map1.reverse(), map2); |
| } |
| |
| { |
| Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride)); |
| Map<MatrixType, Unaligned, Stride<Dynamic,-1> > map2(array+(m.outerSize()-1)*outerstride+m.innerSize()-1, rows, cols, Stride<Dynamic,-1>(-outerstride,-1)); |
| VERIFY_IS_APPROX(map1.reverse(), map2); |
| } |
| } |
| |
| internal::aligned_delete(a_array1, arraysize+1); |
| } |
| |
| // Additional tests for inner-stride but no outer-stride |
| template<int> |
| void bug1453() |
| { |
| const int data[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; |
| typedef Matrix<int,Dynamic,Dynamic,RowMajor> RowMatrixXi; |
| typedef Matrix<int,2,3,ColMajor> ColMatrix23i; |
| typedef Matrix<int,3,2,ColMajor> ColMatrix32i; |
| typedef Matrix<int,2,3,RowMajor> RowMatrix23i; |
| typedef Matrix<int,3,2,RowMajor> RowMatrix32i; |
| |
| VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4,2>())); |
| VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4,2>())); |
| VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6,2>())); |
| VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6,2>())); |
| |
| VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6,2>())); |
| VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6,2>())); |
| VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4,2>())); |
| VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4,2>())); |
| |
| VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4,2>())); |
| VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4,2>())); |
| VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6,2>())); |
| VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6,2>())); |
| |
| VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6,2>())); |
| VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6,2>())); |
| VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4,2>())); |
| VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4,2>())); |
| } |
| |
| EIGEN_DECLARE_TEST(mapstride) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| int maxn = 3; |
| CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) ); |
| CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) ); |
| CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) ); |
| CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) ); |
| CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) ); |
| |
| CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) ); |
| CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) ); |
| CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) ); |
| CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) ); |
| CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) ); |
| CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) ); |
| CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| |
| CALL_SUBTEST_5( bug1453<0>() ); |
| |
| TEST_SET_BUT_UNUSED_VARIABLE(maxn); |
| } |
| } |