| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "product.h" |
| #include <Eigen/LU> |
| |
| // regression test for bug 447 |
| template<int> |
| void product1x1() |
| { |
| Matrix<float,1,3> matAstatic; |
| Matrix<float,3,1> matBstatic; |
| matAstatic.setRandom(); |
| matBstatic.setRandom(); |
| VERIFY_IS_APPROX( (matAstatic * matBstatic).coeff(0,0), |
| matAstatic.cwiseProduct(matBstatic.transpose()).sum() ); |
| |
| MatrixXf matAdynamic(1,3); |
| MatrixXf matBdynamic(3,1); |
| matAdynamic.setRandom(); |
| matBdynamic.setRandom(); |
| VERIFY_IS_APPROX( (matAdynamic * matBdynamic).coeff(0,0), |
| matAdynamic.cwiseProduct(matBdynamic.transpose()).sum() ); |
| } |
| |
| template<typename TC, typename TA, typename TB> |
| const TC& ref_prod(TC &C, const TA &A, const TB &B) |
| { |
| for(Index i=0;i<C.rows();++i) |
| for(Index j=0;j<C.cols();++j) |
| for(Index k=0;k<A.cols();++k) |
| C.coeffRef(i,j) += A.coeff(i,k) * B.coeff(k,j); |
| return C; |
| } |
| |
| template<typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB> |
| std::enable_if_t<! ( (Rows ==1&&Depth!=1&&OA==ColMajor) |
| || (Depth==1&&Rows !=1&&OA==RowMajor) |
| || (Cols ==1&&Depth!=1&&OB==RowMajor) |
| || (Depth==1&&Cols !=1&&OB==ColMajor) |
| || (Rows ==1&&Cols !=1&&OC==ColMajor) |
| || (Cols ==1&&Rows !=1&&OC==RowMajor)),void> |
| test_lazy_single(int rows, int cols, int depth) |
| { |
| Matrix<T,Rows,Depth,OA> A(rows,depth); A.setRandom(); |
| Matrix<T,Depth,Cols,OB> B(depth,cols); B.setRandom(); |
| Matrix<T,Rows,Cols,OC> C(rows,cols); C.setRandom(); |
| Matrix<T,Rows,Cols,OC> D(C); |
| VERIFY_IS_APPROX(C+=A.lazyProduct(B), ref_prod(D,A,B)); |
| } |
| |
| void test_dynamic_bool() |
| { |
| int rows = internal::random<int>(1,64); |
| int cols = internal::random<int>(1,64); |
| int depth = internal::random<int>(1,65); |
| |
| typedef Matrix<bool,Dynamic,Dynamic> MatrixX; |
| MatrixX A(rows,depth); A.setRandom(); |
| MatrixX B(depth,cols); B.setRandom(); |
| MatrixX C(rows,cols); C.setRandom(); |
| MatrixX D(C); |
| for(Index i=0;i<C.rows();++i) |
| for(Index j=0;j<C.cols();++j) |
| for(Index k=0;k<A.cols();++k) |
| D.coeffRef(i,j) |= (A.coeff(i,k) && B.coeff(k,j)); |
| C += A * B; |
| VERIFY_IS_EQUAL(C, D); |
| |
| MatrixX E = B.transpose(); |
| for(Index i=0;i<B.rows();++i) |
| for(Index j=0;j<B.cols();++j) |
| VERIFY_IS_EQUAL(B(i,j), E(j,i)); |
| } |
| |
| template<typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB> |
| std::enable_if_t< ( (Rows ==1&&Depth!=1&&OA==ColMajor) |
| || (Depth==1&&Rows !=1&&OA==RowMajor) |
| || (Cols ==1&&Depth!=1&&OB==RowMajor) |
| || (Depth==1&&Cols !=1&&OB==ColMajor) |
| || (Rows ==1&&Cols !=1&&OC==ColMajor) |
| || (Cols ==1&&Rows !=1&&OC==RowMajor)),void> |
| test_lazy_single(int, int, int) |
| { |
| } |
| |
| template<typename T, int Rows, int Cols, int Depth> |
| void test_lazy_all_layout(int rows=Rows, int cols=Cols, int depth=Depth) |
| { |
| CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,ColMajor,ColMajor>(rows,cols,depth) )); |
| CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,ColMajor,ColMajor>(rows,cols,depth) )); |
| CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,RowMajor,ColMajor>(rows,cols,depth) )); |
| CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,RowMajor,ColMajor>(rows,cols,depth) )); |
| CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,ColMajor,RowMajor>(rows,cols,depth) )); |
| CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,ColMajor,RowMajor>(rows,cols,depth) )); |
| CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,RowMajor,RowMajor>(rows,cols,depth) )); |
| CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,RowMajor,RowMajor>(rows,cols,depth) )); |
| } |
| |
| template<typename T> |
| void test_lazy_l1() |
| { |
| int rows = internal::random<int>(1,12); |
| int cols = internal::random<int>(1,12); |
| int depth = internal::random<int>(1,12); |
| |
| // Inner |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,1,1>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,1,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,1,3>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,1,8>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,1,9>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,1,-1>(1,1,depth) )); |
| |
| // Outer |
| CALL_SUBTEST(( test_lazy_all_layout<T,2,1,1>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,2,1>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,2,2,1>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,3,3,1>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,4,1>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,8,1>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,-1,1>(4,cols) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,7,-1,1>(7,cols) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,-1,8,1>(rows) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,-1,3,1>(rows) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,-1,-1,1>(rows,cols) )); |
| } |
| |
| template<typename T> |
| void test_lazy_l2() |
| { |
| int rows = internal::random<int>(1,12); |
| int cols = internal::random<int>(1,12); |
| int depth = internal::random<int>(1,12); |
| |
| // mat-vec |
| CALL_SUBTEST(( test_lazy_all_layout<T,2,1,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,2,1,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,1,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,1,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,5,1,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,1,5>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,1,6>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,6,1,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,8,1,8>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,-1,1,4>(rows) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,1,-1>(4,1,depth) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,-1,1,-1>(rows,1,depth) )); |
| |
| // vec-mat |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,2,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,2,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,4,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,4,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,5,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,4,5>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,4,6>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,6,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,8,8>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,-1, 4>(1,cols) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1, 4,-1>(1,4,depth) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,1,-1,-1>(1,cols,depth) )); |
| } |
| |
| template<typename T> |
| void test_lazy_l3() |
| { |
| int rows = internal::random<int>(1,12); |
| int cols = internal::random<int>(1,12); |
| int depth = internal::random<int>(1,12); |
| // mat-mat |
| CALL_SUBTEST(( test_lazy_all_layout<T,2,4,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,2,6,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,3,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,8,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,5,6,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,2,5>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,7,6>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,6,8,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,8,3,8>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,-1,6,4>(rows) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,3,-1>(4,3,depth) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,-1,6,-1>(rows,6,depth) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,8,2,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,5,2,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,4,2>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,8,4,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,6,5,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,4,5>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,3,4,6>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,2,6,4>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,7,8,8>() )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,8,-1, 4>(8,cols) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,3, 4,-1>(3,4,depth) )); |
| CALL_SUBTEST(( test_lazy_all_layout<T,4,-1,-1>(4,cols,depth) )); |
| } |
| |
| template<typename T,int N,int M,int K> |
| void test_linear_but_not_vectorizable() |
| { |
| // Check tricky cases for which the result of the product is a vector and thus must exhibit the LinearBit flag, |
| // but is not vectorizable along the linear dimension. |
| Index n = N==Dynamic ? internal::random<Index>(1,32) : N; |
| Index m = M==Dynamic ? internal::random<Index>(1,32) : M; |
| Index k = K==Dynamic ? internal::random<Index>(1,32) : K; |
| |
| { |
| Matrix<T,N,M+1> A; A.setRandom(n,m+1); |
| Matrix<T,M*2,K> B; B.setRandom(m*2,k); |
| Matrix<T,1,K> C; |
| Matrix<T,1,K> R; |
| |
| C.noalias() = A.template topLeftCorner<1,M>() * (B.template topRows<M>()+B.template bottomRows<M>()); |
| R.noalias() = A.template topLeftCorner<1,M>() * (B.template topRows<M>()+B.template bottomRows<M>()).eval(); |
| VERIFY_IS_APPROX(C,R); |
| } |
| |
| { |
| Matrix<T,M+1,N,RowMajor> A; A.setRandom(m+1,n); |
| Matrix<T,K,M*2,RowMajor> B; B.setRandom(k,m*2); |
| Matrix<T,K,1> C; |
| Matrix<T,K,1> R; |
| |
| C.noalias() = (B.template leftCols<M>()+B.template rightCols<M>()) * A.template topLeftCorner<M,1>(); |
| R.noalias() = (B.template leftCols<M>()+B.template rightCols<M>()).eval() * A.template topLeftCorner<M,1>(); |
| VERIFY_IS_APPROX(C,R); |
| } |
| } |
| |
| template<int Rows> |
| void bug_1311() |
| { |
| Matrix< double, Rows, 2 > A; A.setRandom(); |
| Vector2d b = Vector2d::Random() ; |
| Matrix<double,Rows,1> res; |
| res.noalias() = 1. * (A * b); |
| VERIFY_IS_APPROX(res, A*b); |
| res.noalias() = 1.*A * b; |
| VERIFY_IS_APPROX(res, A*b); |
| res.noalias() = (1.*A).lazyProduct(b); |
| VERIFY_IS_APPROX(res, A*b); |
| res.noalias() = (1.*A).lazyProduct(1.*b); |
| VERIFY_IS_APPROX(res, A*b); |
| res.noalias() = (A).lazyProduct(1.*b); |
| VERIFY_IS_APPROX(res, A*b); |
| } |
| |
| template<int> |
| void product_small_regressions() |
| { |
| { |
| // test compilation of (outer_product) * vector |
| Vector3f v = Vector3f::Random(); |
| VERIFY_IS_APPROX( (v * v.transpose()) * v, (v * v.transpose()).eval() * v); |
| } |
| |
| { |
| // regression test for pull-request #93 |
| Eigen::Matrix<double, 1, 1> A; A.setRandom(); |
| Eigen::Matrix<double, 18, 1> B; B.setRandom(); |
| Eigen::Matrix<double, 1, 18> C; C.setRandom(); |
| VERIFY_IS_APPROX(B * A.inverse(), B * A.inverse()[0]); |
| VERIFY_IS_APPROX(A.inverse() * C, A.inverse()[0] * C); |
| } |
| |
| { |
| Eigen::Matrix<double, 10, 10> A, B, C; |
| A.setRandom(); |
| C = A; |
| for(int k=0; k<79; ++k) |
| C = C * A; |
| B.noalias() = (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))) |
| * (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))); |
| VERIFY_IS_APPROX(B,C); |
| } |
| } |
| |
| template<typename T> |
| void product_sweep(int max_m, int max_k, int max_n) { |
| using Matrix = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>; |
| for (int m = 1; m < max_m; ++m) { |
| for (int n = 1; n < max_n; ++n) { |
| Matrix C = Matrix::Zero(m, n); |
| Matrix Cref = Matrix::Zero(m, n); |
| for (int k = 1; k < max_k; ++k) { |
| Matrix A = Matrix::Random(m, k); |
| Matrix B = Matrix::Random(k, n); |
| C = A * B; |
| Cref.setZero(); |
| ref_prod(Cref, A, B); |
| VERIFY_IS_APPROX(C, Cref); |
| } |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(product_small) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( product(Matrix<float, 3, 2>()) ); |
| CALL_SUBTEST_2( product(Matrix<int, 3, 17>()) ); |
| CALL_SUBTEST_8( product(Matrix<double, 3, 17>()) ); |
| CALL_SUBTEST_3( product(Matrix3d()) ); |
| CALL_SUBTEST_4( product(Matrix4d()) ); |
| CALL_SUBTEST_5( product(Matrix4f()) ); |
| CALL_SUBTEST_10( product(Matrix<bfloat16, 3, 2>()) ); |
| CALL_SUBTEST_6( product1x1<0>() ); |
| |
| CALL_SUBTEST_11( test_lazy_l1<float>() ); |
| CALL_SUBTEST_12( test_lazy_l2<float>() ); |
| CALL_SUBTEST_13( test_lazy_l3<float>() ); |
| |
| CALL_SUBTEST_21( test_lazy_l1<double>() ); |
| CALL_SUBTEST_22( test_lazy_l2<double>() ); |
| CALL_SUBTEST_23( test_lazy_l3<double>() ); |
| |
| CALL_SUBTEST_31( test_lazy_l1<std::complex<float> >() ); |
| CALL_SUBTEST_32( test_lazy_l2<std::complex<float> >() ); |
| CALL_SUBTEST_33( test_lazy_l3<std::complex<float> >() ); |
| |
| CALL_SUBTEST_41( test_lazy_l1<std::complex<double> >() ); |
| CALL_SUBTEST_42( test_lazy_l2<std::complex<double> >() ); |
| CALL_SUBTEST_43( test_lazy_l3<std::complex<double> >() ); |
| |
| CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,2,1,Dynamic>() )); |
| CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,3,1,Dynamic>() )); |
| CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,2,1,16>() )); |
| |
| CALL_SUBTEST_6( bug_1311<3>() ); |
| CALL_SUBTEST_6( bug_1311<5>() ); |
| |
| CALL_SUBTEST_9( test_dynamic_bool() ); |
| |
| // Commonly specialized vectorized types. |
| CALL_SUBTEST_50( product_sweep<float>(10, 10, 10) ); |
| CALL_SUBTEST_51( product_sweep<double>(10, 10, 10) ); |
| CALL_SUBTEST_52( product_sweep<Eigen::half>(10, 10, 10) ); |
| CALL_SUBTEST_53( product_sweep<Eigen::bfloat16>(10, 10, 10) ); |
| } |
| |
| CALL_SUBTEST_6( product_small_regressions<0>() ); |
| } |