blob: 121eb865e916c277123ff0506ae4bf131103be33 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <iterator>
#include <numeric>
template< class Iterator >
std::reverse_iterator<Iterator>
make_reverse_iterator( Iterator i )
{
return std::reverse_iterator<Iterator>(i);
}
using std::is_sorted;
template<typename XprType>
bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &) { return true; }
template<typename XprType>
bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &) { return true; }
template<typename Iter>
bool is_default_constructible_and_assignable(const Iter& it)
{
VERIFY(std::is_default_constructible<Iter>::value);
VERIFY(std::is_nothrow_default_constructible<Iter>::value);
Iter it2;
it2 = it;
return (it==it2);
}
template<typename Xpr>
void check_begin_end_for_loop(Xpr xpr)
{
const Xpr& cxpr(xpr);
Index i = 0;
i = 0;
for(typename Xpr::iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
i = 0;
for(typename Xpr::const_iterator it = xpr.cbegin(); it!=xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
i = 0;
for(typename Xpr::const_iterator it = cxpr.begin(); it!=cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
i = 0;
for(typename Xpr::const_iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
{
// simple API check
typename Xpr::const_iterator cit = xpr.begin();
cit = xpr.cbegin();
auto tmp1 = xpr.begin();
VERIFY(tmp1==xpr.begin());
auto tmp2 = xpr.cbegin();
VERIFY(tmp2==xpr.cbegin());
}
VERIFY( xpr.end() -xpr.begin() == xpr.size() );
VERIFY( xpr.cend()-xpr.begin() == xpr.size() );
VERIFY( xpr.end() -xpr.cbegin() == xpr.size() );
VERIFY( xpr.cend()-xpr.cbegin() == xpr.size() );
if(xpr.size()>0) {
VERIFY(xpr.begin() != xpr.end());
VERIFY(xpr.begin() < xpr.end());
VERIFY(xpr.begin() <= xpr.end());
VERIFY(!(xpr.begin() == xpr.end()));
VERIFY(!(xpr.begin() > xpr.end()));
VERIFY(!(xpr.begin() >= xpr.end()));
VERIFY(xpr.cbegin() != xpr.end());
VERIFY(xpr.cbegin() < xpr.end());
VERIFY(xpr.cbegin() <= xpr.end());
VERIFY(!(xpr.cbegin() == xpr.end()));
VERIFY(!(xpr.cbegin() > xpr.end()));
VERIFY(!(xpr.cbegin() >= xpr.end()));
VERIFY(xpr.begin() != xpr.cend());
VERIFY(xpr.begin() < xpr.cend());
VERIFY(xpr.begin() <= xpr.cend());
VERIFY(!(xpr.begin() == xpr.cend()));
VERIFY(!(xpr.begin() > xpr.cend()));
VERIFY(!(xpr.begin() >= xpr.cend()));
}
}
template<typename Scalar, int Rows, int Cols>
void test_stl_iterators(int rows=Rows, int cols=Cols)
{
typedef Matrix<Scalar,Rows,1> VectorType;
typedef Matrix<Scalar,1,Cols> RowVectorType;
typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
VectorType v = VectorType::Random(rows);
const VectorType& cv(v);
ColMatrixType A = ColMatrixType::Random(rows,cols);
const ColMatrixType& cA(A);
RowMatrixType B = RowMatrixType::Random(rows,cols);
using Eigen::placeholders::last;
Index i, j;
// Verify that iterators are default constructible (See bug #1900)
{
VERIFY( is_default_constructible_and_assignable(v.begin()));
VERIFY( is_default_constructible_and_assignable(v.end()));
VERIFY( is_default_constructible_and_assignable(cv.begin()));
VERIFY( is_default_constructible_and_assignable(cv.end()));
VERIFY( is_default_constructible_and_assignable(A.row(0).begin()));
VERIFY( is_default_constructible_and_assignable(A.row(0).end()));
VERIFY( is_default_constructible_and_assignable(cA.row(0).begin()));
VERIFY( is_default_constructible_and_assignable(cA.row(0).end()));
VERIFY( is_default_constructible_and_assignable(B.row(0).begin()));
VERIFY( is_default_constructible_and_assignable(B.row(0).end()));
}
// Check we got a fast pointer-based iterator when expected
{
VERIFY( is_pointer_based_stl_iterator(v.begin()) );
VERIFY( is_pointer_based_stl_iterator(v.end()) );
VERIFY( is_pointer_based_stl_iterator(cv.begin()) );
VERIFY( is_pointer_based_stl_iterator(cv.end()) );
j = internal::random<Index>(0,A.cols()-1);
VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) );
VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) );
VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) );
VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) );
i = internal::random<Index>(0,A.rows()-1);
VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) );
VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) );
VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) );
VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) );
VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) );
VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) );
VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) );
VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) );
VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()) );
VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()) );
VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()) );
VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()) );
}
{
check_begin_end_for_loop(v);
check_begin_end_for_loop(A.col(internal::random<Index>(0,A.cols()-1)));
check_begin_end_for_loop(A.row(internal::random<Index>(0,A.rows()-1)));
check_begin_end_for_loop(v+v);
}
// check swappable
{
using std::swap;
// pointer-based
{
VectorType v_copy = v;
auto a = v.begin();
auto b = v.end()-1;
swap(a,b);
VERIFY_IS_EQUAL(v,v_copy);
VERIFY_IS_EQUAL(*b,*v.begin());
VERIFY_IS_EQUAL(*b,v(0));
VERIFY_IS_EQUAL(*a,v.end()[-1]);
VERIFY_IS_EQUAL(*a,v(last));
}
// generic
{
RowMatrixType B_copy = B;
auto Br = B.reshaped();
auto a = Br.begin();
auto b = Br.end()-1;
swap(a,b);
VERIFY_IS_EQUAL(B,B_copy);
VERIFY_IS_EQUAL(*b,*Br.begin());
VERIFY_IS_EQUAL(*b,Br(0));
VERIFY_IS_EQUAL(*a,Br.end()[-1]);
VERIFY_IS_EQUAL(*a,Br(last));
}
}
// check non-const iterator with for-range loops
{
i = 0;
for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }
j = internal::random<Index>(0,A.cols()-1);
i = 0;
for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }
i = 0;
for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }
j = 0;
i = internal::random<Index>(0,A.rows()-1);
for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
i = 0;
for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
}
// same for const_iterator
{
i = 0;
for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); }
i = 0;
for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
j = 0;
i = internal::random<Index>(0,A.rows()-1);
for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
}
// check reshaped() on row-major
{
i = 0;
Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B;
for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }
}
// check write access
{
VectorType w(v.size());
i = 0;
for(auto& x : w) { x = v(i++); }
VERIFY_IS_EQUAL(v,w);
}
// check for dangling pointers
{
// no dangling because pointer-based
{
j = internal::random<Index>(0,A.cols()-1);
auto it = A.col(j).begin();
for(i=0;i<rows;++i) {
VERIFY_IS_EQUAL(it[i],A(i,j));
}
}
// no dangling because pointer-based
{
i = internal::random<Index>(0,A.rows()-1);
auto it = A.row(i).begin();
for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
}
{
j = internal::random<Index>(0,A.cols()-1);
// this would produce a dangling pointer:
// auto it = (A+2*A).col(j).begin();
// we need to name the temporary expression:
auto tmp = (A+2*A).col(j);
auto it = tmp.begin();
for(i=0;i<rows;++i) {
VERIFY_IS_APPROX(it[i],3*A(i,j));
}
}
}
{
// check basic for loop on vector-wise iterators
j=0;
for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
}
j=0;
for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) {
(*it).coeffRef(0) = (*it).coeff(0); // compilation check
it->coeffRef(0) = it->coeff(0); // compilation check
VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
}
// check valuetype gives us a copy
j=0;
for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
typename decltype(it)::value_type tmp = *it;
VERIFY_IS_NOT_EQUAL( tmp.data() , it->data() );
VERIFY_IS_APPROX( tmp, A.col(j) );
}
}
if(rows>=3) {
VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1));
VERIFY_IS_EQUAL((A.rowwise().begin()+rows/2)[1], A.row(rows/2+1));
}
if(cols>=3) {
VERIFY_IS_EQUAL((A.colwise().begin()+cols/2)[1], A.col(cols/2+1));
}
// check std::sort
{
// first check that is_sorted returns false when required
if(rows>=2)
{
v(1) = v(0)-Scalar(1);
VERIFY(!is_sorted(std::begin(v),std::end(v)));
}
// on a vector
{
std::sort(v.begin(),v.end());
VERIFY(is_sorted(v.begin(),v.end()));
VERIFY(!::is_sorted(make_reverse_iterator(v.end()),make_reverse_iterator(v.begin())));
}
// on a column of a column-major matrix -> pointer-based iterator and default increment
{
j = internal::random<Index>(0,A.cols()-1);
// std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
typename ColMatrixType::ColXpr Acol = A.col(j);
std::sort(Acol.begin(),Acol.end());
VERIFY(is_sorted(Acol.cbegin(),Acol.cend()));
A.setRandom();
std::sort(A.col(j).begin(),A.col(j).end());
VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend()));
A.setRandom();
}
// on a row of a rowmajor matrix -> pointer-based iterator and runtime increment
{
i = internal::random<Index>(0,A.rows()-1);
typename ColMatrixType::RowXpr Arow = A.row(i);
VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols);
std::sort(Arow.begin(),Arow.end());
VERIFY(is_sorted(Arow.cbegin(),Arow.cend()));
A.setRandom();
std::sort(A.row(i).begin(),A.row(i).end());
VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend()));
A.setRandom();
}
// with a generic iterator
{
Reshaped<RowMatrixType,RowMatrixType::SizeAtCompileTime,1> B1 = B.reshaped();
std::sort(B1.begin(),B1.end());
VERIFY(is_sorted(B1.cbegin(),B1.cend()));
B.setRandom();
// assertion because nested expressions are different
// std::sort(B.reshaped().begin(),B.reshaped().end());
// VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
// B.setRandom();
}
}
// check with partial_sum
{
j = internal::random<Index>(0,A.cols()-1);
typename ColMatrixType::ColXpr Acol = A.col(j);
std::partial_sum(Acol.begin(), Acol.end(), v.begin());
VERIFY_IS_APPROX(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last)));
// inplace
std::partial_sum(Acol.begin(), Acol.end(), Acol.begin());
VERIFY_IS_APPROX(v, Acol);
}
// stress random access as required by std::nth_element
if(rows>=3)
{
v.setRandom();
VectorType v1 = v;
std::sort(v1.begin(),v1.end());
std::nth_element(v.begin(), v.begin()+rows/2, v.end());
VERIFY_IS_APPROX(v1(rows/2), v(rows/2));
v.setRandom();
v1 = v;
std::sort(v1.begin()+rows/2,v1.end());
std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end());
VERIFY_IS_APPROX(v1(rows/4), v(rows/4));
}
// check rows/cols iterators with range-for loops
{
j = 0;
for(auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
j = 0;
for(auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }
j = 0;
for(auto c : B.colwise()) {
i = 0;
for(auto& x : c) {
VERIFY_IS_EQUAL(x, B(i,j));
x = A(i,j);
++i;
}
++j;
}
VERIFY_IS_APPROX(A,B);
B.setRandom();
i = 0;
for(auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
i = 0;
for(auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }
}
// check rows/cols iterators with STL algorithms
{
RowVectorType row = RowVectorType::Random(cols);
A.rowwise() = row;
VERIFY( std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
VERIFY( std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
VectorType col = VectorType::Random(rows);
A.colwise() = col;
VERIFY( std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
VERIFY( std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
VERIFY( std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
VERIFY( std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
i = internal::random<Index>(0,A.rows()-1);
A.setRandom();
A.row(i).setZero();
VERIFY_IS_EQUAL(std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.rowwise().begin(), i );
VERIFY_IS_EQUAL(std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.rowwise().rbegin(), (A.rows() - 1) - i );
j = internal::random<Index>(0,A.cols()-1);
A.setRandom();
A.col(j).setZero();
VERIFY_IS_EQUAL(std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.colwise().begin(), j );
VERIFY_IS_EQUAL(std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.colwise().rbegin(), (A.cols() - 1) - j );
}
{
using VecOp = VectorwiseOp<ArrayXXi, 0>;
STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value ));
STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend ())>::value ));
STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value ));
STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cend (std::declval<const VecOp&>()))>::value ));
}
}
// When the compiler sees expression IsContainerTest<C>(0), if C is an
// STL-style container class, the first overload of IsContainerTest
// will be viable (since both C::iterator* and C::const_iterator* are
// valid types and NULL can be implicitly converted to them). It will
// be picked over the second overload as 'int' is a perfect match for
// the type of argument 0. If C::iterator or C::const_iterator is not
// a valid type, the first overload is not viable, and the second
// overload will be picked.
template <class C,
class Iterator = decltype(::std::declval<const C&>().begin()),
class = decltype(::std::declval<const C&>().end()),
class = decltype(++::std::declval<Iterator&>()),
class = decltype(*::std::declval<Iterator>()),
class = typename C::const_iterator>
bool IsContainerType(int /* dummy */) { return true; }
template <class C>
bool IsContainerType(long /* dummy */) { return false; }
template <typename Scalar, int Rows, int Cols>
void test_stl_container_detection(int rows=Rows, int cols=Cols)
{
typedef Matrix<Scalar,Rows,1> VectorType;
typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
ColMatrixType A = ColMatrixType::Random(rows, cols);
RowMatrixType B = RowMatrixType::Random(rows, cols);
Index i = 1;
using ColMatrixColType = decltype(A.col(i));
using ColMatrixRowType = decltype(A.row(i));
using RowMatrixColType = decltype(B.col(i));
using RowMatrixRowType = decltype(B.row(i));
// Vector and matrix col/row are valid Stl-style container.
VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true);
VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true);
VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true);
VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true);
VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true);
// But the matrix itself is not a valid Stl-style container.
VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1);
VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1);
}
EIGEN_DECLARE_TEST(stl_iterators)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(( test_stl_iterators<double,2,3>() ));
CALL_SUBTEST_1(( test_stl_iterators<float,7,5>() ));
CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
}
CALL_SUBTEST_1(( test_stl_container_detection<float,1,1>() ));
CALL_SUBTEST_1(( test_stl_container_detection<float,5,5>() ));
}