| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <iterator> |
| #include <numeric> |
| |
| template< class Iterator > |
| std::reverse_iterator<Iterator> |
| make_reverse_iterator( Iterator i ) |
| { |
| return std::reverse_iterator<Iterator>(i); |
| } |
| |
| using std::is_sorted; |
| |
| template<typename XprType> |
| bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &) { return true; } |
| |
| template<typename XprType> |
| bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &) { return true; } |
| |
| template<typename Iter> |
| bool is_default_constructible_and_assignable(const Iter& it) |
| { |
| VERIFY(std::is_default_constructible<Iter>::value); |
| VERIFY(std::is_nothrow_default_constructible<Iter>::value); |
| Iter it2; |
| it2 = it; |
| return (it==it2); |
| } |
| |
| template<typename Xpr> |
| void check_begin_end_for_loop(Xpr xpr) |
| { |
| const Xpr& cxpr(xpr); |
| Index i = 0; |
| |
| i = 0; |
| for(typename Xpr::iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } |
| |
| i = 0; |
| for(typename Xpr::const_iterator it = xpr.cbegin(); it!=xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } |
| |
| i = 0; |
| for(typename Xpr::const_iterator it = cxpr.begin(); it!=cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } |
| |
| i = 0; |
| for(typename Xpr::const_iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } |
| |
| { |
| // simple API check |
| typename Xpr::const_iterator cit = xpr.begin(); |
| cit = xpr.cbegin(); |
| |
| auto tmp1 = xpr.begin(); |
| VERIFY(tmp1==xpr.begin()); |
| auto tmp2 = xpr.cbegin(); |
| VERIFY(tmp2==xpr.cbegin()); |
| } |
| |
| VERIFY( xpr.end() -xpr.begin() == xpr.size() ); |
| VERIFY( xpr.cend()-xpr.begin() == xpr.size() ); |
| VERIFY( xpr.end() -xpr.cbegin() == xpr.size() ); |
| VERIFY( xpr.cend()-xpr.cbegin() == xpr.size() ); |
| |
| if(xpr.size()>0) { |
| VERIFY(xpr.begin() != xpr.end()); |
| VERIFY(xpr.begin() < xpr.end()); |
| VERIFY(xpr.begin() <= xpr.end()); |
| VERIFY(!(xpr.begin() == xpr.end())); |
| VERIFY(!(xpr.begin() > xpr.end())); |
| VERIFY(!(xpr.begin() >= xpr.end())); |
| |
| VERIFY(xpr.cbegin() != xpr.end()); |
| VERIFY(xpr.cbegin() < xpr.end()); |
| VERIFY(xpr.cbegin() <= xpr.end()); |
| VERIFY(!(xpr.cbegin() == xpr.end())); |
| VERIFY(!(xpr.cbegin() > xpr.end())); |
| VERIFY(!(xpr.cbegin() >= xpr.end())); |
| |
| VERIFY(xpr.begin() != xpr.cend()); |
| VERIFY(xpr.begin() < xpr.cend()); |
| VERIFY(xpr.begin() <= xpr.cend()); |
| VERIFY(!(xpr.begin() == xpr.cend())); |
| VERIFY(!(xpr.begin() > xpr.cend())); |
| VERIFY(!(xpr.begin() >= xpr.cend())); |
| } |
| } |
| |
| template<typename Scalar, int Rows, int Cols> |
| void test_stl_iterators(int rows=Rows, int cols=Cols) |
| { |
| typedef Matrix<Scalar,Rows,1> VectorType; |
| typedef Matrix<Scalar,1,Cols> RowVectorType; |
| typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType; |
| typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType; |
| VectorType v = VectorType::Random(rows); |
| const VectorType& cv(v); |
| ColMatrixType A = ColMatrixType::Random(rows,cols); |
| const ColMatrixType& cA(A); |
| RowMatrixType B = RowMatrixType::Random(rows,cols); |
| using Eigen::placeholders::last; |
| |
| Index i, j; |
| |
| // Verify that iterators are default constructible (See bug #1900) |
| { |
| VERIFY( is_default_constructible_and_assignable(v.begin())); |
| VERIFY( is_default_constructible_and_assignable(v.end())); |
| VERIFY( is_default_constructible_and_assignable(cv.begin())); |
| VERIFY( is_default_constructible_and_assignable(cv.end())); |
| |
| VERIFY( is_default_constructible_and_assignable(A.row(0).begin())); |
| VERIFY( is_default_constructible_and_assignable(A.row(0).end())); |
| VERIFY( is_default_constructible_and_assignable(cA.row(0).begin())); |
| VERIFY( is_default_constructible_and_assignable(cA.row(0).end())); |
| |
| VERIFY( is_default_constructible_and_assignable(B.row(0).begin())); |
| VERIFY( is_default_constructible_and_assignable(B.row(0).end())); |
| } |
| |
| // Check we got a fast pointer-based iterator when expected |
| { |
| VERIFY( is_pointer_based_stl_iterator(v.begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(v.end()) ); |
| VERIFY( is_pointer_based_stl_iterator(cv.begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(cv.end()) ); |
| |
| j = internal::random<Index>(0,A.cols()-1); |
| VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) ); |
| VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) ); |
| |
| i = internal::random<Index>(0,A.rows()-1); |
| VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) ); |
| VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) ); |
| |
| VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) ); |
| VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) ); |
| |
| VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()) ); |
| VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()) ); |
| |
| VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()) ); |
| VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()) ); |
| } |
| |
| { |
| check_begin_end_for_loop(v); |
| check_begin_end_for_loop(A.col(internal::random<Index>(0,A.cols()-1))); |
| check_begin_end_for_loop(A.row(internal::random<Index>(0,A.rows()-1))); |
| check_begin_end_for_loop(v+v); |
| } |
| |
| // check swappable |
| { |
| using std::swap; |
| // pointer-based |
| { |
| VectorType v_copy = v; |
| auto a = v.begin(); |
| auto b = v.end()-1; |
| swap(a,b); |
| VERIFY_IS_EQUAL(v,v_copy); |
| VERIFY_IS_EQUAL(*b,*v.begin()); |
| VERIFY_IS_EQUAL(*b,v(0)); |
| VERIFY_IS_EQUAL(*a,v.end()[-1]); |
| VERIFY_IS_EQUAL(*a,v(last)); |
| } |
| |
| // generic |
| { |
| RowMatrixType B_copy = B; |
| auto Br = B.reshaped(); |
| auto a = Br.begin(); |
| auto b = Br.end()-1; |
| swap(a,b); |
| VERIFY_IS_EQUAL(B,B_copy); |
| VERIFY_IS_EQUAL(*b,*Br.begin()); |
| VERIFY_IS_EQUAL(*b,Br(0)); |
| VERIFY_IS_EQUAL(*a,Br.end()[-1]); |
| VERIFY_IS_EQUAL(*a,Br(last)); |
| } |
| } |
| |
| // check non-const iterator with for-range loops |
| { |
| i = 0; |
| for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); } |
| |
| j = internal::random<Index>(0,A.cols()-1); |
| i = 0; |
| for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); } |
| |
| i = 0; |
| for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; } |
| |
| j = 0; |
| i = internal::random<Index>(0,A.rows()-1); |
| for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); } |
| |
| i = 0; |
| for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); } |
| } |
| |
| // same for const_iterator |
| { |
| i = 0; |
| for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); } |
| |
| i = 0; |
| for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); } |
| |
| j = 0; |
| i = internal::random<Index>(0,A.rows()-1); |
| for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); } |
| } |
| |
| // check reshaped() on row-major |
| { |
| i = 0; |
| Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B; |
| for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); } |
| } |
| |
| // check write access |
| { |
| VectorType w(v.size()); |
| i = 0; |
| for(auto& x : w) { x = v(i++); } |
| VERIFY_IS_EQUAL(v,w); |
| } |
| |
| // check for dangling pointers |
| { |
| // no dangling because pointer-based |
| { |
| j = internal::random<Index>(0,A.cols()-1); |
| auto it = A.col(j).begin(); |
| for(i=0;i<rows;++i) { |
| VERIFY_IS_EQUAL(it[i],A(i,j)); |
| } |
| } |
| |
| // no dangling because pointer-based |
| { |
| i = internal::random<Index>(0,A.rows()-1); |
| auto it = A.row(i).begin(); |
| for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); } |
| } |
| |
| { |
| j = internal::random<Index>(0,A.cols()-1); |
| // this would produce a dangling pointer: |
| // auto it = (A+2*A).col(j).begin(); |
| // we need to name the temporary expression: |
| auto tmp = (A+2*A).col(j); |
| auto it = tmp.begin(); |
| for(i=0;i<rows;++i) { |
| VERIFY_IS_APPROX(it[i],3*A(i,j)); |
| } |
| } |
| } |
| |
| { |
| // check basic for loop on vector-wise iterators |
| j=0; |
| for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { |
| VERIFY_IS_APPROX( it->coeff(0), A(0,j) ); |
| VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) ); |
| } |
| j=0; |
| for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) { |
| (*it).coeffRef(0) = (*it).coeff(0); // compilation check |
| it->coeffRef(0) = it->coeff(0); // compilation check |
| VERIFY_IS_APPROX( it->coeff(0), A(0,j) ); |
| VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) ); |
| } |
| |
| // check valuetype gives us a copy |
| j=0; |
| for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { |
| typename decltype(it)::value_type tmp = *it; |
| VERIFY_IS_NOT_EQUAL( tmp.data() , it->data() ); |
| VERIFY_IS_APPROX( tmp, A.col(j) ); |
| } |
| } |
| |
| if(rows>=3) { |
| VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1)); |
| |
| VERIFY_IS_EQUAL((A.rowwise().begin()+rows/2)[1], A.row(rows/2+1)); |
| } |
| |
| if(cols>=3) { |
| VERIFY_IS_EQUAL((A.colwise().begin()+cols/2)[1], A.col(cols/2+1)); |
| } |
| |
| // check std::sort |
| { |
| // first check that is_sorted returns false when required |
| if(rows>=2) |
| { |
| v(1) = v(0)-Scalar(1); |
| VERIFY(!is_sorted(std::begin(v),std::end(v))); |
| } |
| |
| // on a vector |
| { |
| std::sort(v.begin(),v.end()); |
| VERIFY(is_sorted(v.begin(),v.end())); |
| VERIFY(!::is_sorted(make_reverse_iterator(v.end()),make_reverse_iterator(v.begin()))); |
| } |
| |
| // on a column of a column-major matrix -> pointer-based iterator and default increment |
| { |
| j = internal::random<Index>(0,A.cols()-1); |
| // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators |
| typename ColMatrixType::ColXpr Acol = A.col(j); |
| std::sort(Acol.begin(),Acol.end()); |
| VERIFY(is_sorted(Acol.cbegin(),Acol.cend())); |
| A.setRandom(); |
| |
| std::sort(A.col(j).begin(),A.col(j).end()); |
| VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend())); |
| A.setRandom(); |
| } |
| |
| // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment |
| { |
| i = internal::random<Index>(0,A.rows()-1); |
| typename ColMatrixType::RowXpr Arow = A.row(i); |
| VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols); |
| std::sort(Arow.begin(),Arow.end()); |
| VERIFY(is_sorted(Arow.cbegin(),Arow.cend())); |
| A.setRandom(); |
| |
| std::sort(A.row(i).begin(),A.row(i).end()); |
| VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend())); |
| A.setRandom(); |
| } |
| |
| // with a generic iterator |
| { |
| Reshaped<RowMatrixType,RowMatrixType::SizeAtCompileTime,1> B1 = B.reshaped(); |
| std::sort(B1.begin(),B1.end()); |
| VERIFY(is_sorted(B1.cbegin(),B1.cend())); |
| B.setRandom(); |
| |
| // assertion because nested expressions are different |
| // std::sort(B.reshaped().begin(),B.reshaped().end()); |
| // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend())); |
| // B.setRandom(); |
| } |
| } |
| |
| // check with partial_sum |
| { |
| j = internal::random<Index>(0,A.cols()-1); |
| typename ColMatrixType::ColXpr Acol = A.col(j); |
| std::partial_sum(Acol.begin(), Acol.end(), v.begin()); |
| VERIFY_IS_APPROX(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last))); |
| |
| // inplace |
| std::partial_sum(Acol.begin(), Acol.end(), Acol.begin()); |
| VERIFY_IS_APPROX(v, Acol); |
| } |
| |
| // stress random access as required by std::nth_element |
| if(rows>=3) |
| { |
| v.setRandom(); |
| VectorType v1 = v; |
| std::sort(v1.begin(),v1.end()); |
| std::nth_element(v.begin(), v.begin()+rows/2, v.end()); |
| VERIFY_IS_APPROX(v1(rows/2), v(rows/2)); |
| |
| v.setRandom(); |
| v1 = v; |
| std::sort(v1.begin()+rows/2,v1.end()); |
| std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end()); |
| VERIFY_IS_APPROX(v1(rows/4), v(rows/4)); |
| } |
| |
| // check rows/cols iterators with range-for loops |
| { |
| j = 0; |
| for(auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; } |
| j = 0; |
| for(auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; } |
| |
| j = 0; |
| for(auto c : B.colwise()) { |
| i = 0; |
| for(auto& x : c) { |
| VERIFY_IS_EQUAL(x, B(i,j)); |
| x = A(i,j); |
| ++i; |
| } |
| ++j; |
| } |
| VERIFY_IS_APPROX(A,B); |
| B.setRandom(); |
| |
| i = 0; |
| for(auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; } |
| i = 0; |
| for(auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; } |
| } |
| |
| |
| // check rows/cols iterators with STL algorithms |
| { |
| RowVectorType row = RowVectorType::Random(cols); |
| A.rowwise() = row; |
| VERIFY( std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) ); |
| VERIFY( std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) ); |
| |
| VectorType col = VectorType::Random(rows); |
| A.colwise() = col; |
| VERIFY( std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); |
| VERIFY( std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); |
| VERIFY( std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); |
| VERIFY( std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); |
| |
| i = internal::random<Index>(0,A.rows()-1); |
| A.setRandom(); |
| A.row(i).setZero(); |
| VERIFY_IS_EQUAL(std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.rowwise().begin(), i ); |
| VERIFY_IS_EQUAL(std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.rowwise().rbegin(), (A.rows() - 1) - i ); |
| |
| j = internal::random<Index>(0,A.cols()-1); |
| A.setRandom(); |
| A.col(j).setZero(); |
| VERIFY_IS_EQUAL(std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.colwise().begin(), j ); |
| VERIFY_IS_EQUAL(std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.colwise().rbegin(), (A.cols() - 1) - j ); |
| } |
| |
| { |
| using VecOp = VectorwiseOp<ArrayXXi, 0>; |
| STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value )); |
| STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend ())>::value )); |
| STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value )); |
| STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cend (std::declval<const VecOp&>()))>::value )); |
| } |
| } |
| |
| |
| // When the compiler sees expression IsContainerTest<C>(0), if C is an |
| // STL-style container class, the first overload of IsContainerTest |
| // will be viable (since both C::iterator* and C::const_iterator* are |
| // valid types and NULL can be implicitly converted to them). It will |
| // be picked over the second overload as 'int' is a perfect match for |
| // the type of argument 0. If C::iterator or C::const_iterator is not |
| // a valid type, the first overload is not viable, and the second |
| // overload will be picked. |
| template <class C, |
| class Iterator = decltype(::std::declval<const C&>().begin()), |
| class = decltype(::std::declval<const C&>().end()), |
| class = decltype(++::std::declval<Iterator&>()), |
| class = decltype(*::std::declval<Iterator>()), |
| class = typename C::const_iterator> |
| bool IsContainerType(int /* dummy */) { return true; } |
| |
| template <class C> |
| bool IsContainerType(long /* dummy */) { return false; } |
| |
| template <typename Scalar, int Rows, int Cols> |
| void test_stl_container_detection(int rows=Rows, int cols=Cols) |
| { |
| typedef Matrix<Scalar,Rows,1> VectorType; |
| typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType; |
| typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType; |
| |
| ColMatrixType A = ColMatrixType::Random(rows, cols); |
| RowMatrixType B = RowMatrixType::Random(rows, cols); |
| |
| Index i = 1; |
| |
| using ColMatrixColType = decltype(A.col(i)); |
| using ColMatrixRowType = decltype(A.row(i)); |
| using RowMatrixColType = decltype(B.col(i)); |
| using RowMatrixRowType = decltype(B.row(i)); |
| |
| // Vector and matrix col/row are valid Stl-style container. |
| VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true); |
| VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true); |
| VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true); |
| VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true); |
| VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true); |
| |
| // But the matrix itself is not a valid Stl-style container. |
| VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1); |
| VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1); |
| } |
| |
| EIGEN_DECLARE_TEST(stl_iterators) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(( test_stl_iterators<double,2,3>() )); |
| CALL_SUBTEST_1(( test_stl_iterators<float,7,5>() )); |
| CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) )); |
| CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) )); |
| } |
| |
| CALL_SUBTEST_1(( test_stl_container_detection<float,1,1>() )); |
| CALL_SUBTEST_1(( test_stl_container_detection<float,5,5>() )); |
| } |