| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef SVD_DEFAULT |
| #error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h |
| #endif |
| |
| #ifndef SVD_FOR_MIN_NORM |
| #error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h |
| #endif |
| |
| #ifndef SVD_STATIC_OPTIONS |
| #error a macro SVD_STATIC_OPTIONS(MatrixType, Options) must be defined prior to including svd_common.h |
| #endif |
| |
| #include "svd_fill.h" |
| #include "solverbase.h" |
| |
| // Check that the matrix m is properly reconstructed and that the U and V factors are unitary |
| // The SVD must have already been computed. |
| template<typename SvdType, typename MatrixType> |
| void svd_check_full(const MatrixType& m, const SvdType& svd) |
| { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; |
| typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; |
| |
| MatrixType sigma = MatrixType::Zero(rows,cols); |
| sigma.diagonal() = svd.singularValues().template cast<Scalar>(); |
| MatrixUType u = svd.matrixU(); |
| MatrixVType v = svd.matrixV(); |
| RealScalar scaling = m.cwiseAbs().maxCoeff(); |
| if(scaling<(std::numeric_limits<RealScalar>::min)()) |
| { |
| VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); |
| } |
| else |
| { |
| VERIFY_IS_APPROX(m/scaling, u * (sigma/scaling) * v.adjoint()); |
| } |
| VERIFY_IS_UNITARY(u); |
| VERIFY_IS_UNITARY(v); |
| } |
| |
| // Compare partial SVD defined by computationOptions to a full SVD referenceSvd |
| template <typename MatrixType, typename SvdType, int Options> |
| void svd_compare_to_full(const MatrixType& m, const SvdType& referenceSvd) { |
| typedef typename MatrixType::RealScalar RealScalar; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index diagSize = (std::min)(rows, cols); |
| RealScalar prec = test_precision<RealScalar>(); |
| |
| SVD_STATIC_OPTIONS(MatrixType, Options) svd(m); |
| |
| VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); |
| |
| if (Options & (ComputeFullV | ComputeThinV)) { |
| VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) ); |
| VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(), |
| referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint()); |
| } |
| |
| if (Options & (ComputeFullU | ComputeThinU)) { |
| VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) ); |
| VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(), |
| referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint()); |
| } |
| |
| // The following checks are not critical. |
| // For instance, with Dived&Conquer SVD, if only the factor 'V' is computed then different matrix-matrix product |
| // implementation will be used and the resulting 'V' factor might be significantly different when the SVD |
| // decomposition is not unique, especially with single precision float. |
| ++g_test_level; |
| if (Options & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); |
| if (Options & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); |
| if (Options & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs()); |
| if (Options & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize)); |
| --g_test_level; |
| } |
| |
| template <typename SvdType, typename MatrixType> |
| void svd_least_square(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType; |
| typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; |
| |
| RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols)); |
| SvdType svd(m); |
| |
| if (internal::is_same<RealScalar, double>::value) svd.setThreshold(RealScalar(1e-8)); |
| else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(RealScalar(2e-4)); |
| |
| SolutionType x = svd.solve(rhs); |
| |
| RealScalar residual = (m*x-rhs).norm(); |
| RealScalar rhs_norm = rhs.norm(); |
| if(!test_isMuchSmallerThan(residual,rhs.norm())) |
| { |
| // ^^^ If the residual is very small, then we have an exact solution, so we are already good. |
| |
| // evaluate normal equation which works also for least-squares solutions |
| if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size()) |
| { |
| using std::sqrt; |
| // This test is not stable with single precision. |
| // This is probably because squaring m signicantly affects the precision. |
| if(internal::is_same<RealScalar,float>::value) ++g_test_level; |
| |
| VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs); |
| |
| if(internal::is_same<RealScalar,float>::value) --g_test_level; |
| } |
| |
| // Check that there is no significantly better solution in the neighborhood of x |
| for(Index k=0;k<x.rows();++k) |
| { |
| using std::abs; |
| |
| SolutionType y(x); |
| y.row(k) = (RealScalar(1)+2*NumTraits<RealScalar>::epsilon())*x.row(k); |
| RealScalar residual_y = (m*y-rhs).norm(); |
| VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y ); |
| if(internal::is_same<RealScalar,float>::value) ++g_test_level; |
| VERIFY( test_isApprox(residual_y,residual) || residual < residual_y ); |
| if(internal::is_same<RealScalar,float>::value) --g_test_level; |
| |
| y.row(k) = (RealScalar(1)-2*NumTraits<RealScalar>::epsilon())*x.row(k); |
| residual_y = (m*y-rhs).norm(); |
| VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y ); |
| if(internal::is_same<RealScalar,float>::value) ++g_test_level; |
| VERIFY( test_isApprox(residual_y,residual) || residual < residual_y ); |
| if(internal::is_same<RealScalar,float>::value) --g_test_level; |
| } |
| } |
| } |
| |
| // check minimal norm solutions, the input matrix m is only used to recover problem size |
| template <typename MatrixType, int Options> |
| void svd_min_norm(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| Index cols = m.cols(); |
| |
| enum { |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; |
| |
| // generate a full-rank m x n problem with m<n |
| enum { |
| RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1, |
| RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1 |
| }; |
| typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2; |
| typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2; |
| typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T; |
| Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2); |
| MatrixType2 m2(rank,cols); |
| int guard = 0; |
| do { |
| m2.setRandom(); |
| } while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10); |
| VERIFY(guard<10); |
| |
| RhsType2 rhs2 = RhsType2::Random(rank); |
| // use QR to find a reference minimal norm solution |
| HouseholderQR<MatrixType2T> qr(m2.adjoint()); |
| Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2); |
| tmp.conservativeResize(cols); |
| tmp.tail(cols-rank).setZero(); |
| SolutionType x21 = qr.householderQ() * tmp; |
| // now check with SVD |
| SVD_STATIC_OPTIONS(MatrixType2, Options) svd2(m2); |
| SolutionType x22 = svd2.solve(rhs2); |
| VERIFY_IS_APPROX(m2*x21, rhs2); |
| VERIFY_IS_APPROX(m2*x22, rhs2); |
| VERIFY_IS_APPROX(x21, x22); |
| |
| // Now check with a rank deficient matrix |
| typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3; |
| typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3; |
| Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3); |
| Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank); |
| MatrixType3 m3 = C * m2; |
| RhsType3 rhs3 = C * rhs2; |
| SVD_STATIC_OPTIONS(MatrixType3, Options) svd3(m3); |
| SolutionType x3 = svd3.solve(rhs3); |
| VERIFY_IS_APPROX(m3*x3, rhs3); |
| VERIFY_IS_APPROX(m3*x21, rhs3); |
| VERIFY_IS_APPROX(m2*x3, rhs2); |
| VERIFY_IS_APPROX(x21, x3); |
| } |
| |
| template<typename MatrixType, typename SolverType> |
| void svd_test_solvers(const MatrixType& m, const SolverType& solver) { |
| Index rows, cols, cols2; |
| |
| rows = m.rows(); |
| cols = m.cols(); |
| |
| if(MatrixType::ColsAtCompileTime==Dynamic) |
| { |
| cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE); |
| } |
| else |
| { |
| cols2 = cols; |
| } |
| typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType; |
| check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2); |
| } |
| |
| // work around stupid msvc error when constructing at compile time an expression that involves |
| // a division by zero, even if the numeric type has floating point |
| template<typename Scalar> |
| EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); } |
| |
| // workaround aggressive optimization in ICC |
| template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; } |
| |
| // This function verifies we don't iterate infinitely on nan/inf values, |
| // and that info() returns InvalidInput. |
| template <typename MatrixType> |
| void svd_inf_nan() { |
| SVD_STATIC_OPTIONS(MatrixType, ComputeFullU | ComputeFullV) svd; |
| typedef typename MatrixType::Scalar Scalar; |
| Scalar some_inf = Scalar(1) / zero<Scalar>(); |
| VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf)); |
| svd.compute(MatrixType::Constant(10, 10, some_inf)); |
| VERIFY(svd.info() == InvalidInput); |
| |
| Scalar nan = std::numeric_limits<Scalar>::quiet_NaN(); |
| VERIFY(nan != nan); |
| svd.compute(MatrixType::Constant(10, 10, nan)); |
| VERIFY(svd.info() == InvalidInput); |
| |
| MatrixType m = MatrixType::Zero(10,10); |
| m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf; |
| svd.compute(m); |
| VERIFY(svd.info() == InvalidInput); |
| |
| m = MatrixType::Zero(10,10); |
| m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan; |
| svd.compute(m); |
| VERIFY(svd.info() == InvalidInput); |
| |
| // regression test for bug 791 |
| m.resize(3,3); |
| m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5, |
| 0, -0.5, 0, |
| nan, 0, 0; |
| svd.compute(m); |
| VERIFY(svd.info() == InvalidInput); |
| |
| Scalar min = (std::numeric_limits<Scalar>::min)(); |
| m.resize(4,4); |
| m << 1, 0, 0, 0, |
| 0, 3, 1, min, |
| 1, 0, 1, nan, |
| 0, nan, nan, 0; |
| svd.compute(m); |
| VERIFY(svd.info() == InvalidInput); |
| } |
| |
| // Regression test for bug 286: JacobiSVD loops indefinitely with some |
| // matrices containing denormal numbers. |
| template<typename> |
| void svd_underoverflow() |
| { |
| #if defined __INTEL_COMPILER |
| // shut up warning #239: floating point underflow |
| #pragma warning push |
| #pragma warning disable 239 |
| #endif |
| Matrix2d M; |
| M << -7.90884e-313, -4.94e-324, |
| 0, 5.60844e-313; |
| SVD_STATIC_OPTIONS(Matrix2d, ComputeFullU | ComputeFullV) svd; |
| svd.compute(M); |
| CALL_SUBTEST( svd_check_full(M,svd) ); |
| |
| // Check all 2x2 matrices made with the following coefficients: |
| VectorXd value_set(9); |
| value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223; |
| Array4i id(0,0,0,0); |
| int k = 0; |
| do |
| { |
| M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3)); |
| svd.compute(M); |
| CALL_SUBTEST( svd_check_full(M,svd) ); |
| |
| id(k)++; |
| if(id(k)>=value_set.size()) |
| { |
| while(k<3 && id(k)>=value_set.size()) id(++k)++; |
| id.head(k).setZero(); |
| k=0; |
| } |
| |
| } while((id<int(value_set.size())).all()); |
| |
| #if defined __INTEL_COMPILER |
| #pragma warning pop |
| #endif |
| |
| // Check for overflow: |
| Matrix3d M3; |
| M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307, |
| 3.7841695601406358e+307, 2.4331702789740617e+306, -3.5235707140272905e+307, |
| -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307; |
| |
| SVD_STATIC_OPTIONS(Matrix3d, ComputeFullU | ComputeFullV) svd3; |
| svd3.compute(M3); // just check we don't loop indefinitely |
| CALL_SUBTEST( svd_check_full(M3,svd3) ); |
| } |
| |
| template <typename MatrixType> |
| void svd_all_trivial_2x2(void (*cb)(const MatrixType&)) { |
| MatrixType M; |
| VectorXd value_set(3); |
| value_set << 0, 1, -1; |
| Array4i id(0,0,0,0); |
| int k = 0; |
| do |
| { |
| M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3)); |
| |
| cb(M); |
| |
| id(k)++; |
| if(id(k)>=value_set.size()) |
| { |
| while(k<3 && id(k)>=value_set.size()) id(++k)++; |
| id.head(k).setZero(); |
| k=0; |
| } |
| |
| } while((id<int(value_set.size())).all()); |
| } |
| |
| template<typename> |
| void svd_preallocate() |
| { |
| Vector3f v(3.f, 2.f, 1.f); |
| MatrixXf m = v.asDiagonal(); |
| |
| internal::set_is_malloc_allowed(false); |
| VERIFY_RAISES_ASSERT(VectorXf tmp(10);) |
| SVD_DEFAULT(MatrixXf) svd; |
| internal::set_is_malloc_allowed(true); |
| svd.compute(m); |
| VERIFY_IS_APPROX(svd.singularValues(), v); |
| VERIFY_RAISES_ASSERT(svd.matrixU()); |
| VERIFY_RAISES_ASSERT(svd.matrixV()); |
| |
| SVD_STATIC_OPTIONS(MatrixXf, ComputeFullU | ComputeFullV) svd2(3, 3); |
| internal::set_is_malloc_allowed(false); |
| svd2.compute(m); |
| internal::set_is_malloc_allowed(true); |
| VERIFY_IS_APPROX(svd2.singularValues(), v); |
| VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); |
| VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); |
| internal::set_is_malloc_allowed(false); |
| svd2.compute(m); |
| internal::set_is_malloc_allowed(true); |
| } |
| |
| template <typename MatrixType, int QRPreconditioner = 0> |
| void svd_verify_assert_full_only(const MatrixType& input = MatrixType()) { |
| enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime }; |
| |
| typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType; |
| RhsType rhs = RhsType::Zero(input.rows()); |
| MatrixType m(input.rows(), input.cols()); |
| svd_fill_random(m); |
| |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd0; |
| VERIFY_RAISES_ASSERT((svd0.matrixU())); |
| VERIFY_RAISES_ASSERT((svd0.singularValues())); |
| VERIFY_RAISES_ASSERT((svd0.matrixV())); |
| VERIFY_RAISES_ASSERT((svd0.solve(rhs))); |
| VERIFY_RAISES_ASSERT((svd0.transpose().solve(rhs))); |
| VERIFY_RAISES_ASSERT((svd0.adjoint().solve(rhs))); |
| |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd1(m); |
| VERIFY_RAISES_ASSERT((svd1.matrixU())); |
| VERIFY_RAISES_ASSERT((svd1.matrixV())); |
| VERIFY_RAISES_ASSERT((svd1.solve(rhs))); |
| |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU) svdFullU(m); |
| VERIFY_RAISES_ASSERT((svdFullU.matrixV())); |
| VERIFY_RAISES_ASSERT((svdFullU.solve(rhs))); |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullV) svdFullV(m); |
| VERIFY_RAISES_ASSERT((svdFullV.matrixU())); |
| VERIFY_RAISES_ASSERT((svdFullV.solve(rhs))); |
| } |
| |
| template <typename MatrixType, int QRPreconditioner = 0> |
| void svd_verify_assert(const MatrixType& input = MatrixType()) { |
| enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime }; |
| typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType; |
| RhsType rhs = RhsType::Zero(input.rows()); |
| MatrixType m(input.rows(), input.cols()); |
| svd_fill_random(m); |
| |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU) svdThinU(m); |
| VERIFY_RAISES_ASSERT((svdThinU.matrixV())); |
| VERIFY_RAISES_ASSERT((svdThinU.solve(rhs))); |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinV) svdThinV(m); |
| VERIFY_RAISES_ASSERT((svdThinV.matrixU())); |
| VERIFY_RAISES_ASSERT((svdThinV.solve(rhs))); |
| |
| svd_verify_assert_full_only<MatrixType, QRPreconditioner>(m); |
| } |
| |
| template <typename MatrixType, int Options> |
| void svd_compute_checks(const MatrixType& m) { |
| typedef SVD_STATIC_OPTIONS(MatrixType, Options) SVDType; |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| DiagAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime), |
| MatrixURowsAtCompileTime = SVDType::MatrixUType::RowsAtCompileTime, |
| MatrixUColsAtCompileTime = SVDType::MatrixUType::ColsAtCompileTime, |
| MatrixVRowsAtCompileTime = SVDType::MatrixVType::RowsAtCompileTime, |
| MatrixVColsAtCompileTime = SVDType::MatrixVType::ColsAtCompileTime |
| }; |
| |
| SVDType staticSvd(m); |
| |
| VERIFY(MatrixURowsAtCompileTime == RowsAtCompileTime); |
| VERIFY(MatrixVRowsAtCompileTime == ColsAtCompileTime); |
| if (Options & ComputeThinU) VERIFY(MatrixUColsAtCompileTime == DiagAtCompileTime); |
| if (Options & ComputeFullU) VERIFY(MatrixUColsAtCompileTime == RowsAtCompileTime); |
| if (Options & ComputeThinV) VERIFY(MatrixVColsAtCompileTime == DiagAtCompileTime); |
| if (Options & ComputeFullV) VERIFY(MatrixVColsAtCompileTime == ColsAtCompileTime); |
| |
| if (Options & (ComputeThinU | ComputeFullU)) |
| VERIFY(staticSvd.computeU()); |
| else |
| VERIFY(!staticSvd.computeU()); |
| if (Options & (ComputeThinV | ComputeFullV)) |
| VERIFY(staticSvd.computeV()); |
| else |
| VERIFY(!staticSvd.computeV()); |
| |
| if (staticSvd.computeU()) VERIFY(staticSvd.matrixU().isUnitary()); |
| if (staticSvd.computeV()) VERIFY(staticSvd.matrixV().isUnitary()); |
| |
| if (staticSvd.computeU() && staticSvd.computeV()) { |
| svd_test_solvers(m, staticSvd); |
| svd_least_square<SVDType, MatrixType>(m); |
| // svd_min_norm generates non-square matrices so it can't be used with NoQRPreconditioner |
| if ((Options & internal::QRPreconditionerBits) != NoQRPreconditioner) svd_min_norm<MatrixType, Options>(m); |
| } |
| } |
| |
| template <typename MatrixType, int QRPreconditioner = 0> |
| void svd_thin_option_checks(const MatrixType& input) { |
| MatrixType m(input.rows(), input.cols()); |
| svd_fill_random(m); |
| |
| svd_compute_checks<MatrixType, QRPreconditioner>(m); |
| svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU>(m); |
| svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinV>(m); |
| svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV>(m); |
| |
| svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV>(m); |
| svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV>(m); |
| |
| typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) FullSvdType; |
| FullSvdType fullSvd(m); |
| svd_check_full(m, fullSvd); |
| svd_compare_to_full<MatrixType, FullSvdType, QRPreconditioner | ComputeFullU | ComputeFullV>(m, fullSvd); |
| } |
| |
| template <typename MatrixType, int QRPreconditioner = 0> |
| void svd_option_checks_full_only(const MatrixType& input) { |
| MatrixType m(input.rows(), input.cols()); |
| svd_fill_random(m); |
| svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m); |
| svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m); |
| svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m); |
| |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m); |
| svd_check_full(m, fullSvd); |
| } |
| |
| template <typename MatrixType, int QRPreconditioner = 0> |
| void svd_check_max_size_matrix(int initialRows, int initialCols) { |
| enum { |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| |
| int rows = MaxRowsAtCompileTime == Dynamic ? initialRows : (std::min)(initialRows, (int)MaxRowsAtCompileTime); |
| int cols = MaxColsAtCompileTime == Dynamic ? initialCols : (std::min)(initialCols, (int)MaxColsAtCompileTime); |
| |
| MatrixType m(rows, cols); |
| svd_fill_random(m); |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV) thinSvd(m); |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV) mixedSvd1(m); |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV) mixedSvd2(m); |
| SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m); |
| |
| MatrixType n(MaxRowsAtCompileTime, MaxColsAtCompileTime); |
| svd_fill_random(n); |
| thinSvd.compute(n); |
| mixedSvd1.compute(n); |
| mixedSvd2.compute(n); |
| fullSvd.compute(n); |
| |
| MatrixX<typename MatrixType::Scalar> dynamicMatrix(MaxRowsAtCompileTime + 1, MaxColsAtCompileTime + 1); |
| |
| VERIFY_RAISES_ASSERT(thinSvd.compute(dynamicMatrix)); |
| VERIFY_RAISES_ASSERT(mixedSvd1.compute(dynamicMatrix)); |
| VERIFY_RAISES_ASSERT(mixedSvd2.compute(dynamicMatrix)); |
| VERIFY_RAISES_ASSERT(fullSvd.compute(dynamicMatrix)); |
| } |
| |
| template <typename SvdType, typename MatrixType> |
| void svd_verify_constructor_options_assert(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| Index rows = m.rows(); |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType; |
| RhsType rhs(rows); |
| svd_fill_random(rhs); |
| SvdType svd; |
| VERIFY_RAISES_ASSERT(svd.matrixU()) |
| VERIFY_RAISES_ASSERT(svd.singularValues()) |
| VERIFY_RAISES_ASSERT(svd.matrixV()) |
| VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs)) |
| VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs)) |
| } |
| |
| #undef SVD_DEFAULT |
| #undef SVD_FOR_MIN_NORM |
| #undef SVD_STATIC_OPTIONS |