|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2001 Intel Corporation | 
|  | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  | // | 
|  | // The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath. | 
|  | // inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M, | 
|  | // adjugate of M and determinant of M respectively. M# is computed block-wise | 
|  | // using specific formulae. For proof, see: | 
|  | // https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html | 
|  | // Variable names are adopted from \src\LU\Inverse_SSE.h. | 
|  | // | 
|  | // The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h | 
|  | // comes from the following Intel's library: | 
|  | // http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/ | 
|  | // | 
|  | // Here is the respective copyright and license statement: | 
|  | // | 
|  | //   Copyright (c) 2001 Intel Corporation. | 
|  | // | 
|  | // Permition is granted to use, copy, distribute and prepare derivative works | 
|  | // of this library for any purpose and without fee, provided, that the above | 
|  | // copyright notice and this statement appear in all copies. | 
|  | // Intel makes no representations about the suitability of this software for | 
|  | // any purpose, and specifically disclaims all warranties. | 
|  | // See LEGAL.TXT for all the legal information. | 
|  | // | 
|  | // TODO: Unify implementations of different data types (i.e. float and double). | 
|  | #ifndef EIGEN_INVERSE_SIZE_4_H | 
|  | #define EIGEN_INVERSE_SIZE_4_H | 
|  |  | 
|  | #include "../InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen | 
|  | { | 
|  | namespace internal | 
|  | { | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse_size4<Architecture::Target, float, MatrixType, ResultType> | 
|  | { | 
|  | enum | 
|  | { | 
|  | MatrixAlignment = traits<MatrixType>::Alignment, | 
|  | ResultAlignment = traits<ResultType>::Alignment, | 
|  | StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit) | 
|  | }; | 
|  | typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType; | 
|  |  | 
|  | static void run(const MatrixType &mat, ResultType &result) | 
|  | { | 
|  | ActualMatrixType matrix(mat); | 
|  |  | 
|  | const float* data = matrix.data(); | 
|  | const Index stride = matrix.innerStride(); | 
|  | Packet4f _L1 = ploadt<Packet4f,MatrixAlignment>(data); | 
|  | Packet4f _L2 = ploadt<Packet4f,MatrixAlignment>(data + stride*4); | 
|  | Packet4f _L3 = ploadt<Packet4f,MatrixAlignment>(data + stride*8); | 
|  | Packet4f _L4 = ploadt<Packet4f,MatrixAlignment>(data + stride*12); | 
|  |  | 
|  | // Four 2x2 sub-matrices of the input matrix | 
|  | // input = [[A, B], | 
|  | //          [C, D]] | 
|  | Packet4f A, B, C, D; | 
|  |  | 
|  | if (!StorageOrdersMatch) | 
|  | { | 
|  | A = vec4f_unpacklo(_L1, _L2); | 
|  | B = vec4f_unpacklo(_L3, _L4); | 
|  | C = vec4f_unpackhi(_L1, _L2); | 
|  | D = vec4f_unpackhi(_L3, _L4); | 
|  | } | 
|  | else | 
|  | { | 
|  | A = vec4f_movelh(_L1, _L2); | 
|  | B = vec4f_movehl(_L2, _L1); | 
|  | C = vec4f_movelh(_L3, _L4); | 
|  | D = vec4f_movehl(_L4, _L3); | 
|  | } | 
|  |  | 
|  | Packet4f AB, DC; | 
|  |  | 
|  | // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product. | 
|  | AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B); | 
|  | AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1))); | 
|  |  | 
|  | // DC = D#*C | 
|  | DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C); | 
|  | DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1))); | 
|  |  | 
|  | // determinants of the sub-matrices | 
|  | Packet4f dA, dB, dC, dD; | 
|  |  | 
|  | dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A); | 
|  | dA = psub(dA, vec4f_movehl(dA, dA)); | 
|  |  | 
|  | dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B); | 
|  | dB = psub(dB, vec4f_movehl(dB, dB)); | 
|  |  | 
|  | dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C); | 
|  | dC = psub(dC, vec4f_movehl(dC, dC)); | 
|  |  | 
|  | dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D); | 
|  | dD = psub(dD, vec4f_movehl(dD, dD)); | 
|  |  | 
|  | Packet4f d, d1, d2; | 
|  |  | 
|  | d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB); | 
|  | d = padd(d, vec4f_movehl(d, d)); | 
|  | d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0)); | 
|  | d1 = pmul(dA, dD); | 
|  | d2 = pmul(dB, dC); | 
|  |  | 
|  | // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C) | 
|  | Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0); | 
|  |  | 
|  | // reciprocal of the determinant of the input matrix, rd = 1/det | 
|  | Packet4f rd = pdiv(pset1<Packet4f>(1.0f), det); | 
|  |  | 
|  | // Four sub-matrices of the inverse | 
|  | Packet4f iA, iB, iC, iD; | 
|  |  | 
|  | // iD = D*|A| - C*A#*B | 
|  | iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB)); | 
|  | iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB))); | 
|  | iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD); | 
|  |  | 
|  | // iA = A*|D| - B*D#*C | 
|  | iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC)); | 
|  | iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC))); | 
|  | iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA); | 
|  |  | 
|  | // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A | 
|  | iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0)); | 
|  | iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1))); | 
|  | iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB); | 
|  |  | 
|  | // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D | 
|  | iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0)); | 
|  | iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1))); | 
|  | iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC); | 
|  |  | 
|  | const float sign_mask[4] = {0.0f, numext::bit_cast<float>(0x80000000u), numext::bit_cast<float>(0x80000000u), 0.0f}; | 
|  | const Packet4f p4f_sign_PNNP = ploadu<Packet4f>(sign_mask); | 
|  | rd = pxor(rd, p4f_sign_PNNP); | 
|  | iA = pmul(iA, rd); | 
|  | iB = pmul(iB, rd); | 
|  | iC = pmul(iC, rd); | 
|  | iD = pmul(iD, rd); | 
|  |  | 
|  | Index res_stride = result.outerStride(); | 
|  | float *res = result.data(); | 
|  |  | 
|  | pstoret<float, Packet4f, ResultAlignment>(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1)); | 
|  | pstoret<float, Packet4f, ResultAlignment>(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0)); | 
|  | pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1)); | 
|  | pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG)) | 
|  | // same algorithm as above, except that each operand is split into | 
|  | // halves for two registers to hold. | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse_size4<Architecture::Target, double, MatrixType, ResultType> | 
|  | { | 
|  | enum | 
|  | { | 
|  | MatrixAlignment = traits<MatrixType>::Alignment, | 
|  | ResultAlignment = traits<ResultType>::Alignment, | 
|  | StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit) | 
|  | }; | 
|  | typedef typename conditional<(MatrixType::Flags & LinearAccessBit), | 
|  | MatrixType const &, | 
|  | typename MatrixType::PlainObject>::type | 
|  | ActualMatrixType; | 
|  |  | 
|  | static void run(const MatrixType &mat, ResultType &result) | 
|  | { | 
|  | ActualMatrixType matrix(mat); | 
|  |  | 
|  | // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower | 
|  | // row e.g. A1, upper row of A, A2, lower row of A | 
|  | // input = [[A, B],  =  [[[A1, [B1, | 
|  | //          [C, D]]        A2], B2]], | 
|  | //                       [[C1, [D1, | 
|  | //                         C2], D2]]] | 
|  |  | 
|  | Packet2d A1, A2, B1, B2, C1, C2, D1, D2; | 
|  |  | 
|  | const double* data = matrix.data(); | 
|  | const Index stride = matrix.innerStride(); | 
|  | if (StorageOrdersMatch) | 
|  | { | 
|  | A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0); | 
|  | B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2); | 
|  | A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4); | 
|  | B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6); | 
|  | C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8); | 
|  | D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10); | 
|  | C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12); | 
|  | D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14); | 
|  | } | 
|  | else | 
|  | { | 
|  | Packet2d temp; | 
|  | A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0); | 
|  | C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2); | 
|  | A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4); | 
|  | C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6); | 
|  | temp = A1; | 
|  | A1 = vec2d_unpacklo(A1, A2); | 
|  | A2 = vec2d_unpackhi(temp, A2); | 
|  |  | 
|  | temp = C1; | 
|  | C1 = vec2d_unpacklo(C1, C2); | 
|  | C2 = vec2d_unpackhi(temp, C2); | 
|  |  | 
|  | B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8); | 
|  | D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10); | 
|  | B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12); | 
|  | D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14); | 
|  |  | 
|  | temp = B1; | 
|  | B1 = vec2d_unpacklo(B1, B2); | 
|  | B2 = vec2d_unpackhi(temp, B2); | 
|  |  | 
|  | temp = D1; | 
|  | D1 = vec2d_unpacklo(D1, D2); | 
|  | D2 = vec2d_unpackhi(temp, D2); | 
|  | } | 
|  |  | 
|  | // determinants of the sub-matrices | 
|  | Packet2d dA, dB, dC, dD; | 
|  |  | 
|  | dA = vec2d_swizzle2(A2, A2, 1); | 
|  | dA = pmul(A1, dA); | 
|  | dA = psub(dA, vec2d_duplane(dA, 1)); | 
|  |  | 
|  | dB = vec2d_swizzle2(B2, B2, 1); | 
|  | dB = pmul(B1, dB); | 
|  | dB = psub(dB, vec2d_duplane(dB, 1)); | 
|  |  | 
|  | dC = vec2d_swizzle2(C2, C2, 1); | 
|  | dC = pmul(C1, dC); | 
|  | dC = psub(dC, vec2d_duplane(dC, 1)); | 
|  |  | 
|  | dD = vec2d_swizzle2(D2, D2, 1); | 
|  | dD = pmul(D1, dD); | 
|  | dD = psub(dD, vec2d_duplane(dD, 1)); | 
|  |  | 
|  | Packet2d DC1, DC2, AB1, AB2; | 
|  |  | 
|  | // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product. | 
|  | AB1 = pmul(B1, vec2d_duplane(A2, 1)); | 
|  | AB2 = pmul(B2, vec2d_duplane(A1, 0)); | 
|  | AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1))); | 
|  | AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0))); | 
|  |  | 
|  | // DC = D#*C | 
|  | DC1 = pmul(C1, vec2d_duplane(D2, 1)); | 
|  | DC2 = pmul(C2, vec2d_duplane(D1, 0)); | 
|  | DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1))); | 
|  | DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0))); | 
|  |  | 
|  | Packet2d d1, d2; | 
|  |  | 
|  | // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C) | 
|  | Packet2d det; | 
|  |  | 
|  | // reciprocal of the determinant of the input matrix, rd = 1/det | 
|  | Packet2d rd; | 
|  |  | 
|  | d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0)); | 
|  | d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3)); | 
|  | rd = padd(d1, d2); | 
|  | rd = padd(rd, vec2d_duplane(rd, 1)); | 
|  |  | 
|  | d1 = pmul(dA, dD); | 
|  | d2 = pmul(dB, dC); | 
|  |  | 
|  | det = padd(d1, d2); | 
|  | det = psub(det, rd); | 
|  | det = vec2d_duplane(det, 0); | 
|  | rd = pdiv(pset1<Packet2d>(1.0), det); | 
|  |  | 
|  | // rows of four sub-matrices of the inverse | 
|  | Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2; | 
|  |  | 
|  | // iD = D*|A| - C*A#*B | 
|  | iD1 = pmul(AB1, vec2d_duplane(C1, 0)); | 
|  | iD2 = pmul(AB1, vec2d_duplane(C2, 0)); | 
|  | iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1))); | 
|  | iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1))); | 
|  | dA = vec2d_duplane(dA, 0); | 
|  | iD1 = psub(pmul(D1, dA), iD1); | 
|  | iD2 = psub(pmul(D2, dA), iD2); | 
|  |  | 
|  | // iA = A*|D| - B*D#*C | 
|  | iA1 = pmul(DC1, vec2d_duplane(B1, 0)); | 
|  | iA2 = pmul(DC1, vec2d_duplane(B2, 0)); | 
|  | iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1))); | 
|  | iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1))); | 
|  | dD = vec2d_duplane(dD, 0); | 
|  | iA1 = psub(pmul(A1, dD), iA1); | 
|  | iA2 = psub(pmul(A2, dD), iA2); | 
|  |  | 
|  | // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A | 
|  | iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1)); | 
|  | iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1)); | 
|  | iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2))); | 
|  | iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2))); | 
|  | dB = vec2d_duplane(dB, 0); | 
|  | iB1 = psub(pmul(C1, dB), iB1); | 
|  | iB2 = psub(pmul(C2, dB), iB2); | 
|  |  | 
|  | // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D | 
|  | iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1)); | 
|  | iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1)); | 
|  | iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2))); | 
|  | iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2))); | 
|  | dC = vec2d_duplane(dC, 0); | 
|  | iC1 = psub(pmul(B1, dC), iC1); | 
|  | iC2 = psub(pmul(B2, dC), iC2); | 
|  |  | 
|  | const double sign_mask1[2] = {0.0, numext::bit_cast<double>(0x8000000000000000ull)}; | 
|  | const double sign_mask2[2] = {numext::bit_cast<double>(0x8000000000000000ull), 0.0}; | 
|  | const Packet2d sign_PN = ploadu<Packet2d>(sign_mask1); | 
|  | const Packet2d sign_NP = ploadu<Packet2d>(sign_mask2); | 
|  | d1 = pxor(rd, sign_PN); | 
|  | d2 = pxor(rd, sign_NP); | 
|  |  | 
|  | Index res_stride = result.outerStride(); | 
|  | double *res = result.data(); | 
|  | pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1)); | 
|  | pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2)); | 
|  | pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1)); | 
|  | pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2)); | 
|  | pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1)); | 
|  | pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2)); | 
|  | pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1)); | 
|  | pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2)); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  | } // namespace internal | 
|  | } // namespace Eigen | 
|  | #endif |