|  | 
 | #include <iostream> | 
 | #include <Eigen/Geometry> | 
 | #include <bench/BenchTimer.h> | 
 | using namespace Eigen; | 
 | using namespace std; | 
 |  | 
 |  | 
 |  | 
 | template<typename Q> | 
 | EIGEN_DONT_INLINE Q nlerp(const Q& a, const Q& b, typename Q::Scalar t) | 
 | { | 
 |   return Q((a.coeffs() * (1.0-t) + b.coeffs() * t).normalized()); | 
 | } | 
 |  | 
 | template<typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_eigen(const Q& a, const Q& b, typename Q::Scalar t) | 
 | { | 
 |   return a.slerp(t,b); | 
 | } | 
 |  | 
 | template<typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_legacy(const Q& a, const Q& b, typename Q::Scalar t) | 
 | { | 
 |   typedef typename Q::Scalar Scalar; | 
 |   static const Scalar one = Scalar(1) - dummy_precision<Scalar>(); | 
 |   Scalar d = a.dot(b); | 
 |   Scalar absD = internal::abs(d); | 
 |   if (absD>=one) | 
 |     return a; | 
 |  | 
 |   // theta is the angle between the 2 quaternions | 
 |   Scalar theta = std::acos(absD); | 
 |   Scalar sinTheta = internal::sin(theta); | 
 |  | 
 |   Scalar scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta; | 
 |   Scalar scale1 = internal::sin( ( t * theta) ) / sinTheta; | 
 |   if (d<0) | 
 |     scale1 = -scale1; | 
 |  | 
 |   return Q(scale0 * a.coeffs() + scale1 * b.coeffs()); | 
 | } | 
 |  | 
 | template<typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_legacy_nlerp(const Q& a, const Q& b, typename Q::Scalar t) | 
 | { | 
 |   typedef typename Q::Scalar Scalar; | 
 |   static const Scalar one = Scalar(1) - epsilon<Scalar>(); | 
 |   Scalar d = a.dot(b); | 
 |   Scalar absD = internal::abs(d); | 
 |    | 
 |   Scalar scale0; | 
 |   Scalar scale1; | 
 |    | 
 |   if (absD>=one) | 
 |   { | 
 |     scale0 = Scalar(1) - t; | 
 |     scale1 = t; | 
 |   } | 
 |   else | 
 |   { | 
 |     // theta is the angle between the 2 quaternions | 
 |     Scalar theta = std::acos(absD); | 
 |     Scalar sinTheta = internal::sin(theta); | 
 |  | 
 |     scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta; | 
 |     scale1 = internal::sin( ( t * theta) ) / sinTheta; | 
 |     if (d<0) | 
 |       scale1 = -scale1; | 
 |   } | 
 |  | 
 |   return Q(scale0 * a.coeffs() + scale1 * b.coeffs()); | 
 | } | 
 |  | 
 | template<typename T> | 
 | inline T sin_over_x(T x) | 
 | { | 
 |   if (T(1) + x*x == T(1)) | 
 |     return T(1); | 
 |   else | 
 |     return std::sin(x)/x; | 
 | } | 
 |  | 
 | template<typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_rw(const Q& a, const Q& b, typename Q::Scalar t) | 
 | { | 
 |   typedef typename Q::Scalar Scalar; | 
 |    | 
 |   Scalar d = a.dot(b); | 
 |   Scalar theta; | 
 |   if (d<0.0) | 
 |     theta = /*M_PI -*/ Scalar(2)*std::asin( (a.coeffs()+b.coeffs()).norm()/2 ); | 
 |   else | 
 |     theta = Scalar(2)*std::asin( (a.coeffs()-b.coeffs()).norm()/2 ); | 
 |    | 
 |   // theta is the angle between the 2 quaternions | 
 | //   Scalar theta = std::acos(absD); | 
 |   Scalar sinOverTheta = sin_over_x(theta); | 
 |  | 
 |   Scalar scale0 = (Scalar(1)-t)*sin_over_x( ( Scalar(1) - t ) * theta) / sinOverTheta; | 
 |   Scalar scale1 = t * sin_over_x( ( t * theta) ) / sinOverTheta; | 
 |   if (d<0) | 
 |     scale1 = -scale1; | 
 |  | 
 |   return Quaternion<Scalar>(scale0 * a.coeffs() + scale1 * b.coeffs()); | 
 | } | 
 |  | 
 | template<typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_gael(const Q& a, const Q& b, typename Q::Scalar t) | 
 | { | 
 |   typedef typename Q::Scalar Scalar; | 
 |    | 
 |   Scalar d = a.dot(b); | 
 |   Scalar theta; | 
 | //   theta = Scalar(2) * atan2((a.coeffs()-b.coeffs()).norm(),(a.coeffs()+b.coeffs()).norm()); | 
 | //   if (d<0.0) | 
 | //     theta = M_PI-theta; | 
 |    | 
 |   if (d<0.0) | 
 |     theta = /*M_PI -*/ Scalar(2)*std::asin( (-a.coeffs()-b.coeffs()).norm()/2 ); | 
 |   else | 
 |     theta = Scalar(2)*std::asin( (a.coeffs()-b.coeffs()).norm()/2 ); | 
 |    | 
 |    | 
 |   Scalar scale0; | 
 |   Scalar scale1; | 
 |   if(theta*theta-Scalar(6)==-Scalar(6)) | 
 |   { | 
 |     scale0 = Scalar(1) - t; | 
 |     scale1 = t; | 
 |   } | 
 |   else | 
 |   { | 
 |     Scalar sinTheta = std::sin(theta); | 
 |     scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta; | 
 |     scale1 = internal::sin( ( t * theta) ) / sinTheta; | 
 |     if (d<0) | 
 |       scale1 = -scale1; | 
 |   } | 
 |  | 
 |   return Quaternion<Scalar>(scale0 * a.coeffs() + scale1 * b.coeffs()); | 
 | } | 
 |  | 
 | int main() | 
 | { | 
 |   typedef double RefScalar; | 
 |   typedef float TestScalar; | 
 |    | 
 |   typedef Quaternion<RefScalar>  Qd; | 
 |   typedef Quaternion<TestScalar> Qf; | 
 |    | 
 |   unsigned int g_seed = (unsigned int) time(NULL); | 
 |   std::cout << g_seed << "\n"; | 
 | //   g_seed = 1259932496; | 
 |   srand(g_seed); | 
 |    | 
 |   Matrix<RefScalar,Dynamic,1> maxerr(7); | 
 |   maxerr.setZero(); | 
 |    | 
 |   Matrix<RefScalar,Dynamic,1> avgerr(7); | 
 |   avgerr.setZero(); | 
 |    | 
 |   cout << "double=>float=>double       nlerp        eigen        legacy(snap)         legacy(nlerp)        rightway         gael's criteria\n"; | 
 |    | 
 |   int rep = 100; | 
 |   int iters = 40; | 
 |   for (int w=0; w<rep; ++w) | 
 |   { | 
 |     Qf a, b; | 
 |     a.coeffs().setRandom(); | 
 |     a.normalize(); | 
 |     b.coeffs().setRandom(); | 
 |     b.normalize(); | 
 |      | 
 |     Qf c[6]; | 
 |      | 
 |     Qd ar(a.cast<RefScalar>()); | 
 |     Qd br(b.cast<RefScalar>()); | 
 |     Qd cr; | 
 |      | 
 |      | 
 |      | 
 |     cout.precision(8); | 
 |     cout << std::scientific; | 
 |     for (int i=0; i<iters; ++i) | 
 |     { | 
 |       RefScalar t = 0.65; | 
 |       cr = slerp_rw(ar,br,t); | 
 |        | 
 |       Qf refc = cr.cast<TestScalar>(); | 
 |       c[0] = nlerp(a,b,t); | 
 |       c[1] = slerp_eigen(a,b,t); | 
 |       c[2] = slerp_legacy(a,b,t); | 
 |       c[3] = slerp_legacy_nlerp(a,b,t); | 
 |       c[4] = slerp_rw(a,b,t); | 
 |       c[5] = slerp_gael(a,b,t); | 
 |        | 
 |       VectorXd err(7); | 
 |       err[0] = (cr.coeffs()-refc.cast<RefScalar>().coeffs()).norm(); | 
 | //       std::cout << err[0] << "    "; | 
 |       for (int k=0; k<6; ++k) | 
 |       { | 
 |         err[k+1] = (c[k].coeffs()-refc.coeffs()).norm(); | 
 | //         std::cout << err[k+1] << "    "; | 
 |       } | 
 |       maxerr = maxerr.cwise().max(err); | 
 |       avgerr += err; | 
 | //       std::cout << "\n"; | 
 |       b = cr.cast<TestScalar>(); | 
 |       br = cr; | 
 |     } | 
 | //     std::cout << "\n"; | 
 |   } | 
 |   avgerr /= RefScalar(rep*iters); | 
 |   cout << "\n\nAccuracy:\n" | 
 |        << "  max: " << maxerr.transpose() << "\n"; | 
 |   cout << "  avg: " << avgerr.transpose() << "\n"; | 
 |    | 
 |   // perf bench | 
 |   Quaternionf a,b; | 
 |   a.coeffs().setRandom(); | 
 |   a.normalize(); | 
 |   b.coeffs().setRandom(); | 
 |   b.normalize(); | 
 |   //b = a; | 
 |   float s = 0.65; | 
 |      | 
 |   #define BENCH(FUNC) {\ | 
 |     BenchTimer t; \ | 
 |     for(int k=0; k<2; ++k) {\ | 
 |       t.start(); \ | 
 |       for(int i=0; i<1000000; ++i) \ | 
 |         FUNC(a,b,s); \ | 
 |       t.stop(); \ | 
 |     } \ | 
 |     cout << "  " << #FUNC << " => \t " << t.value() << "s\n"; \ | 
 |   } | 
 |    | 
 |   cout << "\nSpeed:\n" << std::fixed; | 
 |   BENCH(nlerp); | 
 |   BENCH(slerp_eigen); | 
 |   BENCH(slerp_legacy); | 
 |   BENCH(slerp_legacy_nlerp); | 
 |   BENCH(slerp_rw); | 
 |   BENCH(slerp_gael); | 
 | } | 
 |  |