|  |  | 
|  | //g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out | 
|  | //g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out | 
|  | // -DNOGMM -DNOMTL | 
|  | // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a | 
|  |  | 
|  | #ifndef SIZE | 
|  | #define SIZE 10000 | 
|  | #endif | 
|  |  | 
|  | #ifndef DENSITY | 
|  | #define DENSITY 0.01 | 
|  | #endif | 
|  |  | 
|  | #ifndef REPEAT | 
|  | #define REPEAT 1 | 
|  | #endif | 
|  |  | 
|  | #include "BenchSparseUtil.h" | 
|  |  | 
|  | #ifndef MINDENSITY | 
|  | #define MINDENSITY 0.0004 | 
|  | #endif | 
|  |  | 
|  | #ifndef NBTRIES | 
|  | #define NBTRIES 10 | 
|  | #endif | 
|  |  | 
|  | #define BENCH(X) \ | 
|  | timer.reset(); \ | 
|  | for (int _j=0; _j<NBTRIES; ++_j) { \ | 
|  | timer.start(); \ | 
|  | for (int _k=0; _k<REPEAT; ++_k) { \ | 
|  | X  \ | 
|  | } timer.stop(); } | 
|  |  | 
|  | typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix; | 
|  | typedef SparseMatrix<Scalar,RowMajorBit|UpperTriangular> EigenSparseTriMatrixRow; | 
|  |  | 
|  | void fillMatrix(float density, int rows, int cols,  EigenSparseTriMatrix& dst) | 
|  | { | 
|  | dst.startFill(rows*cols*density); | 
|  | for(int j = 0; j < cols; j++) | 
|  | { | 
|  | for(int i = 0; i < j; i++) | 
|  | { | 
|  | Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0; | 
|  | if (v!=0) | 
|  | dst.fill(i,j) = v; | 
|  | } | 
|  | dst.fill(j,j) = internal::random<Scalar>(); | 
|  | } | 
|  | dst.endFill(); | 
|  | } | 
|  |  | 
|  | int main(int argc, char *argv[]) | 
|  | { | 
|  | int rows = SIZE; | 
|  | int cols = SIZE; | 
|  | float density = DENSITY; | 
|  | BenchTimer timer; | 
|  | #if 1 | 
|  | EigenSparseTriMatrix sm1(rows,cols); | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  | DenseVector b = DenseVector::Random(cols); | 
|  | DenseVector x = DenseVector::Random(cols); | 
|  |  | 
|  | bool densedone = false; | 
|  |  | 
|  | for (float density = DENSITY; density>=MINDENSITY; density*=0.5) | 
|  | { | 
|  | EigenSparseTriMatrix sm1(rows, cols); | 
|  | fillMatrix(density, rows, cols, sm1); | 
|  |  | 
|  | // dense matrices | 
|  | #ifdef DENSEMATRIX | 
|  | if (!densedone) | 
|  | { | 
|  | densedone = true; | 
|  | std::cout << "Eigen Dense\t" << density*100 << "%\n"; | 
|  | DenseMatrix m1(rows,cols); | 
|  | Matrix<Scalar,Dynamic,Dynamic,Dynamic,Dynamic,RowMajorBit> m2(rows,cols); | 
|  | eiToDense(sm1, m1); | 
|  | m2 = m1; | 
|  |  | 
|  | BENCH(x = m1.marked<UpperTriangular>().solveTriangular(b);) | 
|  | std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
|  | //       std::cerr << x.transpose() << "\n"; | 
|  |  | 
|  | BENCH(x = m2.marked<UpperTriangular>().solveTriangular(b);) | 
|  | std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl; | 
|  | //       std::cerr << x.transpose() << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // eigen sparse matrices | 
|  | { | 
|  | std::cout << "Eigen sparse\t" << density*100 << "%\n"; | 
|  | EigenSparseTriMatrixRow sm2 = sm1; | 
|  |  | 
|  | BENCH(x = sm1.solveTriangular(b);) | 
|  | std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
|  | //       std::cerr << x.transpose() << "\n"; | 
|  |  | 
|  | BENCH(x = sm2.solveTriangular(b);) | 
|  | std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl; | 
|  | //       std::cerr << x.transpose() << "\n"; | 
|  |  | 
|  | //       x = b; | 
|  | //       BENCH(sm1.inverseProductInPlace(x);) | 
|  | //       std::cout << "   colmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl; | 
|  | //       std::cerr << x.transpose() << "\n"; | 
|  | // | 
|  | //       x = b; | 
|  | //       BENCH(sm2.inverseProductInPlace(x);) | 
|  | //       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl; | 
|  | //       std::cerr << x.transpose() << "\n"; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // CSparse | 
|  | #ifdef CSPARSE | 
|  | { | 
|  | std::cout << "CSparse \t" << density*100 << "%\n"; | 
|  | cs *m1; | 
|  | eiToCSparse(sm1, m1); | 
|  |  | 
|  | BENCH(x = b; if (!cs_lsolve (m1, x.data())){std::cerr << "cs_lsolve failed\n"; break;}; ) | 
|  | std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // GMM++ | 
|  | #ifndef NOGMM | 
|  | { | 
|  | std::cout << "GMM++ sparse\t" << density*100 << "%\n"; | 
|  | GmmSparse m1(rows,cols); | 
|  | gmm::csr_matrix<Scalar> m2; | 
|  | eiToGmm(sm1, m1); | 
|  | gmm::copy(m1,m2); | 
|  | std::vector<Scalar> gmmX(cols), gmmB(cols); | 
|  | Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols) = x; | 
|  | Map<Matrix<Scalar,Dynamic,1> >(&gmmB[0], cols) = b; | 
|  |  | 
|  | gmmX = gmmB; | 
|  | BENCH(gmm::upper_tri_solve(m1, gmmX, false);) | 
|  | std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
|  | //       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n"; | 
|  |  | 
|  | gmmX = gmmB; | 
|  | BENCH(gmm::upper_tri_solve(m2, gmmX, false);) | 
|  | timer.stop(); | 
|  | std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl; | 
|  | //       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // MTL4 | 
|  | #ifndef NOMTL | 
|  | { | 
|  | std::cout << "MTL4\t" << density*100 << "%\n"; | 
|  | MtlSparse m1(rows,cols); | 
|  | MtlSparseRowMajor m2(rows,cols); | 
|  | eiToMtl(sm1, m1); | 
|  | m2 = m1; | 
|  | mtl::dense_vector<Scalar> x(rows, 1.0); | 
|  | mtl::dense_vector<Scalar> b(rows, 1.0); | 
|  |  | 
|  | BENCH(x = mtl::upper_trisolve(m1,b);) | 
|  | std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
|  | //       std::cerr << x << "\n"; | 
|  |  | 
|  | BENCH(x = mtl::upper_trisolve(m2,b);) | 
|  | std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl; | 
|  | //       std::cerr << x << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | std::cout << "\n\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | // bench small matrices (in-place versus return bye value) | 
|  | { | 
|  | timer.reset(); | 
|  | for (int _j=0; _j<10; ++_j) { | 
|  | Matrix4f m = Matrix4f::Random(); | 
|  | Vector4f b = Vector4f::Random(); | 
|  | Vector4f x = Vector4f::Random(); | 
|  | timer.start(); | 
|  | for (int _k=0; _k<1000000; ++_k) { | 
|  | b = m.inverseProduct(b); | 
|  | } | 
|  | timer.stop(); | 
|  | } | 
|  | std::cout << "4x4 :\t" << timer.value() << endl; | 
|  | } | 
|  |  | 
|  | { | 
|  | timer.reset(); | 
|  | for (int _j=0; _j<10; ++_j) { | 
|  | Matrix4f m = Matrix4f::Random(); | 
|  | Vector4f b = Vector4f::Random(); | 
|  | Vector4f x = Vector4f::Random(); | 
|  | timer.start(); | 
|  | for (int _k=0; _k<1000000; ++_k) { | 
|  | m.inverseProductInPlace(x); | 
|  | } | 
|  | timer.stop(); | 
|  | } | 
|  | std::cout << "4x4 IP :\t" << timer.value() << endl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  |