|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_AUTODIFF_SCALAR_H | 
|  | #define EIGEN_AUTODIFF_SCALAR_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename A, typename B> | 
|  | struct make_coherent_impl { | 
|  | static void run(A&, B&) {} | 
|  | }; | 
|  |  | 
|  | // resize a to match b is a.size()==0, and conversely. | 
|  | template<typename A, typename B> | 
|  | void make_coherent(const A& a, const B&b) | 
|  | { | 
|  | make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived()); | 
|  | } | 
|  |  | 
|  | template<typename DerivativeType, bool Enable> struct auto_diff_special_op; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | template<typename DerivativeType> class AutoDiffScalar; | 
|  |  | 
|  | template<typename NewDerType> | 
|  | inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) { | 
|  | return AutoDiffScalar<NewDerType>(value,der); | 
|  | } | 
|  |  | 
|  | /** \class AutoDiffScalar | 
|  | * \brief A scalar type replacement with automatic differentiation capability | 
|  | * | 
|  | * \param DerivativeType the vector type used to store/represent the derivatives. The base scalar type | 
|  | *                 as well as the number of derivatives to compute are determined from this type. | 
|  | *                 Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf | 
|  | *                 if the number of derivatives is not known at compile time, and/or, the number | 
|  | *                 of derivatives is large. | 
|  | *                 Note that DerivativeType can also be a reference (e.g., \c VectorXf&) to wrap a | 
|  | *                 existing vector into an AutoDiffScalar. | 
|  | *                 Finally, DerivativeType can also be any Eigen compatible expression. | 
|  | * | 
|  | * This class represents a scalar value while tracking its respective derivatives using Eigen's expression | 
|  | * template mechanism. | 
|  | * | 
|  | * It supports the following list of global math function: | 
|  | *  - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos, | 
|  | *  - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos, | 
|  | *  - internal::conj, internal::real, internal::imag, numext::abs2. | 
|  | * | 
|  | * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However, | 
|  | * in that case, the expression template mechanism only occurs at the top Matrix level, | 
|  | * while derivatives are computed right away. | 
|  | * | 
|  | */ | 
|  |  | 
|  | template<typename DerivativeType> | 
|  | class AutoDiffScalar | 
|  | : public internal::auto_diff_special_op | 
|  | <DerivativeType, !internal::is_same<typename internal::traits<typename internal::remove_all<DerivativeType>::type>::Scalar, | 
|  | typename NumTraits<typename internal::traits<typename internal::remove_all<DerivativeType>::type>::Scalar>::Real>::value> | 
|  | { | 
|  | public: | 
|  | typedef internal::auto_diff_special_op | 
|  | <DerivativeType, !internal::is_same<typename internal::traits<typename internal::remove_all<DerivativeType>::type>::Scalar, | 
|  | typename NumTraits<typename internal::traits<typename internal::remove_all<DerivativeType>::type>::Scalar>::Real>::value> Base; | 
|  | typedef typename internal::remove_all<DerivativeType>::type DerType; | 
|  | typedef typename internal::traits<DerType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real Real; | 
|  |  | 
|  | using Base::operator+; | 
|  | using Base::operator*; | 
|  |  | 
|  | /** Default constructor without any initialization. */ | 
|  | AutoDiffScalar() {} | 
|  |  | 
|  | /** Constructs an active scalar from its \a value, | 
|  | and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */ | 
|  | AutoDiffScalar(const Scalar& value, int nbDer, int derNumber) | 
|  | : m_value(value), m_derivatives(DerType::Zero(nbDer)) | 
|  | { | 
|  | m_derivatives.coeffRef(derNumber) = Scalar(1); | 
|  | } | 
|  |  | 
|  | /** Conversion from a scalar constant to an active scalar. | 
|  | * The derivatives are set to zero. */ | 
|  | /*explicit*/ AutoDiffScalar(const Real& value) | 
|  | : m_value(value) | 
|  | { | 
|  | if(m_derivatives.size()>0) | 
|  | m_derivatives.setZero(); | 
|  | } | 
|  |  | 
|  | /** Constructs an active scalar from its \a value and derivatives \a der */ | 
|  | AutoDiffScalar(const Scalar& value, const DerType& der) | 
|  | : m_value(value), m_derivatives(der) | 
|  | {} | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | , typename internal::enable_if< | 
|  | internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value | 
|  | &&  internal::is_convertible<OtherDerType,DerType>::value , void*>::type = 0 | 
|  | #endif | 
|  | ) | 
|  | : m_value(other.value()), m_derivatives(other.derivatives()) | 
|  | {} | 
|  |  | 
|  | friend  std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a) | 
|  | { | 
|  | return s << a.value(); | 
|  | } | 
|  |  | 
|  | AutoDiffScalar(const AutoDiffScalar& other) | 
|  | : m_value(other.value()), m_derivatives(other.derivatives()) | 
|  | {} | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other) | 
|  | { | 
|  | m_value = other.value(); | 
|  | m_derivatives = other.derivatives(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator=(const AutoDiffScalar& other) | 
|  | { | 
|  | m_value = other.value(); | 
|  | m_derivatives = other.derivatives(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator=(const Scalar& other) | 
|  | { | 
|  | m_value = other; | 
|  | if(m_derivatives.size()>0) | 
|  | m_derivatives.setZero(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | //     inline operator const Scalar& () const { return m_value; } | 
|  | //     inline operator Scalar& () { return m_value; } | 
|  |  | 
|  | inline const Scalar& value() const { return m_value; } | 
|  | inline Scalar& value() { return m_value; } | 
|  |  | 
|  | inline const DerType& derivatives() const { return m_derivatives; } | 
|  | inline DerType& derivatives() { return m_derivatives; } | 
|  |  | 
|  | inline bool operator< (const Scalar& other) const  { return m_value <  other; } | 
|  | inline bool operator<=(const Scalar& other) const  { return m_value <= other; } | 
|  | inline bool operator> (const Scalar& other) const  { return m_value >  other; } | 
|  | inline bool operator>=(const Scalar& other) const  { return m_value >= other; } | 
|  | inline bool operator==(const Scalar& other) const  { return m_value == other; } | 
|  | inline bool operator!=(const Scalar& other) const  { return m_value != other; } | 
|  |  | 
|  | friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a <  b.value(); } | 
|  | friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); } | 
|  | friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a >  b.value(); } | 
|  | friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); } | 
|  | friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); } | 
|  | friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); } | 
|  |  | 
|  | template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const  { return m_value <  b.value(); } | 
|  | template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value <= b.value(); } | 
|  | template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const  { return m_value >  b.value(); } | 
|  | template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value >= b.value(); } | 
|  | template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const  { return m_value == b.value(); } | 
|  | template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value != b.value(); } | 
|  |  | 
|  | inline AutoDiffScalar<DerType&> operator+(const Scalar& other) const | 
|  | { | 
|  | return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b) | 
|  | { | 
|  | return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
|  | } | 
|  |  | 
|  | //     inline const AutoDiffScalar<DerType&> operator+(const Real& other) const | 
|  | //     { | 
|  | //       return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); | 
|  | //     } | 
|  |  | 
|  | //     friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b) | 
|  | //     { | 
|  | //       return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
|  | //     } | 
|  |  | 
|  | inline AutoDiffScalar& operator+=(const Scalar& other) | 
|  | { | 
|  | value() += other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> > | 
|  | operator+(const AutoDiffScalar<OtherDerType>& other) const | 
|  | { | 
|  | internal::make_coherent(m_derivatives, other.derivatives()); | 
|  | return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >( | 
|  | m_value + other.value(), | 
|  | m_derivatives + other.derivatives()); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar& | 
|  | operator+=(const AutoDiffScalar<OtherDerType>& other) | 
|  | { | 
|  | (*this) = (*this) + other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<DerType&> operator-(const Scalar& b) const | 
|  | { | 
|  | return AutoDiffScalar<DerType&>(m_value - b, m_derivatives); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > | 
|  | operator-(const Scalar& a, const AutoDiffScalar& b) | 
|  | { | 
|  | return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > | 
|  | (a - b.value(), -b.derivatives()); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator-=(const Scalar& other) | 
|  | { | 
|  | value() -= other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> > | 
|  | operator-(const AutoDiffScalar<OtherDerType>& other) const | 
|  | { | 
|  | internal::make_coherent(m_derivatives, other.derivatives()); | 
|  | return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >( | 
|  | m_value - other.value(), | 
|  | m_derivatives - other.derivatives()); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar& | 
|  | operator-=(const AutoDiffScalar<OtherDerType>& other) | 
|  | { | 
|  | *this = *this - other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > | 
|  | operator-() const | 
|  | { | 
|  | return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >( | 
|  | -m_value, | 
|  | -m_derivatives); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > | 
|  | operator*(const Scalar& other) const | 
|  | { | 
|  | return MakeAutoDiffScalar(m_value * other, m_derivatives * other); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > | 
|  | operator*(const Scalar& other, const AutoDiffScalar& a) | 
|  | { | 
|  | return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other); | 
|  | } | 
|  |  | 
|  | //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
|  | //     operator*(const Real& other) const | 
|  | //     { | 
|  | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
|  | //         m_value * other, | 
|  | //         (m_derivatives * other)); | 
|  | //     } | 
|  | // | 
|  | //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
|  | //     operator*(const Real& other, const AutoDiffScalar& a) | 
|  | //     { | 
|  | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
|  | //         a.value() * other, | 
|  | //         a.derivatives() * other); | 
|  | //     } | 
|  |  | 
|  | inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > | 
|  | operator/(const Scalar& other) const | 
|  | { | 
|  | return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other))); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > | 
|  | operator/(const Scalar& other, const AutoDiffScalar& a) | 
|  | { | 
|  | return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value()))); | 
|  | } | 
|  |  | 
|  | //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
|  | //     operator/(const Real& other) const | 
|  | //     { | 
|  | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
|  | //         m_value / other, | 
|  | //         (m_derivatives * (Real(1)/other))); | 
|  | //     } | 
|  | // | 
|  | //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
|  | //     operator/(const Real& other, const AutoDiffScalar& a) | 
|  | //     { | 
|  | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
|  | //         other / a.value(), | 
|  | //         a.derivatives() * (-Real(1)/other)); | 
|  | //     } | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE( | 
|  | CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA | 
|  | const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA | 
|  | const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) > | 
|  | operator/(const AutoDiffScalar<OtherDerType>& other) const | 
|  | { | 
|  | internal::make_coherent(m_derivatives, other.derivatives()); | 
|  | return MakeAutoDiffScalar( | 
|  | m_value / other.value(), | 
|  | ((m_derivatives * other.value()) - (other.derivatives() * m_value)) | 
|  | * (Scalar(1)/(other.value()*other.value()))); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>, | 
|  | const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product), | 
|  | const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > > | 
|  | operator*(const AutoDiffScalar<OtherDerType>& other) const | 
|  | { | 
|  | internal::make_coherent(m_derivatives, other.derivatives()); | 
|  | return MakeAutoDiffScalar( | 
|  | m_value * other.value(), | 
|  | (m_derivatives * other.value()) + (other.derivatives() * m_value)); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator*=(const Scalar& other) | 
|  | { | 
|  | *this = *this * other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other) | 
|  | { | 
|  | *this = *this * other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator/=(const Scalar& other) | 
|  | { | 
|  | *this = *this / other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename OtherDerType> | 
|  | inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other) | 
|  | { | 
|  | *this = *this / other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | Scalar m_value; | 
|  | DerType m_derivatives; | 
|  |  | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename DerivativeType> | 
|  | struct auto_diff_special_op<DerivativeType, true> | 
|  | //   : auto_diff_scalar_op<DerivativeType, typename NumTraits<Scalar>::Real, | 
|  | //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> | 
|  | { | 
|  | typedef typename remove_all<DerivativeType>::type DerType; | 
|  | typedef typename traits<DerType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real Real; | 
|  |  | 
|  | //   typedef auto_diff_scalar_op<DerivativeType, typename NumTraits<Scalar>::Real, | 
|  | //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base; | 
|  |  | 
|  | //   using Base::operator+; | 
|  | //   using Base::operator+=; | 
|  | //   using Base::operator-; | 
|  | //   using Base::operator-=; | 
|  | //   using Base::operator*; | 
|  | //   using Base::operator*=; | 
|  |  | 
|  | const AutoDiffScalar<DerivativeType>& derived() const { return *static_cast<const AutoDiffScalar<DerivativeType>*>(this); } | 
|  | AutoDiffScalar<DerivativeType>& derived() { return *static_cast<AutoDiffScalar<DerivativeType>*>(this); } | 
|  |  | 
|  |  | 
|  | inline AutoDiffScalar<DerType&> operator+(const Real& other) const | 
|  | { | 
|  | return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives()); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<DerivativeType>& b) | 
|  | { | 
|  | return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<DerivativeType>& operator+=(const Real& other) | 
|  | { | 
|  | derived().value() += other; | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  |  | 
|  | inline AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type > | 
|  | operator*(const Real& other) const | 
|  | { | 
|  | return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >( | 
|  | derived().value() * other, | 
|  | derived().derivatives() * other); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type > | 
|  | operator*(const Real& other, const AutoDiffScalar<DerivativeType>& a) | 
|  | { | 
|  | return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >( | 
|  | a.value() * other, | 
|  | a.derivatives() * other); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<DerivativeType>& operator*=(const Scalar& other) | 
|  | { | 
|  | *this = *this * other; | 
|  | return derived(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename DerivativeType> | 
|  | struct auto_diff_special_op<DerivativeType, false> | 
|  | { | 
|  | void operator*() const; | 
|  | void operator-() const; | 
|  | void operator+() const; | 
|  | }; | 
|  |  | 
|  | template<typename BinOp, typename A, typename B, typename RefType> | 
|  | void make_coherent_expression(CwiseBinaryOp<BinOp,A,B> xpr, const RefType &ref) | 
|  | { | 
|  | make_coherent(xpr.const_cast_derived().lhs(), ref); | 
|  | make_coherent(xpr.const_cast_derived().rhs(), ref); | 
|  | } | 
|  |  | 
|  | template<typename UnaryOp, typename A, typename RefType> | 
|  | void make_coherent_expression(const CwiseUnaryOp<UnaryOp,A> &xpr, const RefType &ref) | 
|  | { | 
|  | make_coherent(xpr.nestedExpression().const_cast_derived(), ref); | 
|  | } | 
|  |  | 
|  | // needed for compilation only | 
|  | template<typename UnaryOp, typename A, typename RefType> | 
|  | void make_coherent_expression(const CwiseNullaryOp<UnaryOp,A> &, const RefType &) | 
|  | {} | 
|  |  | 
|  | template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B> | 
|  | struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> { | 
|  | typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A; | 
|  | static void run(A& a, B& b) { | 
|  | if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0)) | 
|  | { | 
|  | a.resize(b.size()); | 
|  | a.setZero(); | 
|  | } | 
|  | else if (B::SizeAtCompileTime==Dynamic && a.size()!=0 && b.size()==0) | 
|  | { | 
|  | make_coherent_expression(b,a); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols> | 
|  | struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > { | 
|  | typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B; | 
|  | static void run(A& a, B& b) { | 
|  | if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0)) | 
|  | { | 
|  | b.resize(a.size()); | 
|  | b.setZero(); | 
|  | } | 
|  | else if (A::SizeAtCompileTime==Dynamic && b.size()!=0 && a.size()==0) | 
|  | { | 
|  | make_coherent_expression(a,b); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, | 
|  | typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols> | 
|  | struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, | 
|  | Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > { | 
|  | typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A; | 
|  | typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B; | 
|  | static void run(A& a, B& b) { | 
|  | if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0)) | 
|  | { | 
|  | a.resize(b.size()); | 
|  | a.setZero(); | 
|  | } | 
|  | else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0)) | 
|  | { | 
|  | b.resize(a.size()); | 
|  | b.setZero(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | template<typename DerType, typename BinOp> | 
|  | struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp> | 
|  | { | 
|  | typedef AutoDiffScalar<DerType> ReturnType; | 
|  | }; | 
|  |  | 
|  | template<typename DerType, typename BinOp> | 
|  | struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp> | 
|  | { | 
|  | typedef AutoDiffScalar<DerType> ReturnType; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // The following is an attempt to let Eigen's known about expression template, but that's more tricky! | 
|  |  | 
|  | // template<typename DerType, typename BinOp> | 
|  | // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp> | 
|  | // { | 
|  | //   enum { Defined = 1 }; | 
|  | //   typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType; | 
|  | // }; | 
|  | // | 
|  | // template<typename DerType1,typename DerType2, typename BinOp> | 
|  | // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp> | 
|  | // { | 
|  | //   enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value }; | 
|  | //   typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType; | 
|  | // }; | 
|  |  | 
|  | #define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \ | 
|  | template<typename DerType> \ | 
|  | inline Eigen::AutoDiffScalar< \ | 
|  | EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \ | 
|  | FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \ | 
|  | using namespace Eigen; \ | 
|  | typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \ | 
|  | EIGEN_UNUSED_VARIABLE(sizeof(Scalar)); \ | 
|  | CODE; \ | 
|  | } | 
|  |  | 
|  | template<typename DerType> | 
|  | struct CleanedUpDerType { | 
|  | typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> type; | 
|  | }; | 
|  |  | 
|  | template<typename DerType> | 
|  | inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x)  { return x; } | 
|  | template<typename DerType> | 
|  | inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x)  { return x; } | 
|  | template<typename DerType> | 
|  | inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&)    { return 0.; } | 
|  | template<typename DerType, typename T> | 
|  | inline typename CleanedUpDerType<DerType>::type (min)(const AutoDiffScalar<DerType>& x, const T& y) { | 
|  | typedef typename CleanedUpDerType<DerType>::type ADS; | 
|  | return (x <= y ? ADS(x) : ADS(y)); | 
|  | } | 
|  | template<typename DerType, typename T> | 
|  | inline typename CleanedUpDerType<DerType>::type (max)(const AutoDiffScalar<DerType>& x, const T& y) { | 
|  | typedef typename CleanedUpDerType<DerType>::type ADS; | 
|  | return (x >= y ? ADS(x) : ADS(y)); | 
|  | } | 
|  | template<typename DerType, typename T> | 
|  | inline typename CleanedUpDerType<DerType>::type (min)(const T& x, const AutoDiffScalar<DerType>& y) { | 
|  | typedef typename CleanedUpDerType<DerType>::type ADS; | 
|  | return (x < y ? ADS(x) : ADS(y)); | 
|  | } | 
|  | template<typename DerType, typename T> | 
|  | inline typename CleanedUpDerType<DerType>::type (max)(const T& x, const AutoDiffScalar<DerType>& y) { | 
|  | typedef typename CleanedUpDerType<DerType>::type ADS; | 
|  | return (x > y ? ADS(x) : ADS(y)); | 
|  | } | 
|  | template<typename DerType> | 
|  | inline typename CleanedUpDerType<DerType>::type (min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { | 
|  | return (x.value() < y.value() ? x : y); | 
|  | } | 
|  | template<typename DerType> | 
|  | inline typename CleanedUpDerType<DerType>::type (max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { | 
|  | return (x.value() >= y.value() ? x : y); | 
|  | } | 
|  |  | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs, | 
|  | using std::abs; | 
|  | return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2, | 
|  | using numext::abs2; | 
|  | return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt, | 
|  | using std::sqrt; | 
|  | Scalar sqrtx = sqrt(x.value()); | 
|  | return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos, | 
|  | using std::cos; | 
|  | using std::sin; | 
|  | return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin, | 
|  | using std::sin; | 
|  | using std::cos; | 
|  | return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp, | 
|  | using std::exp; | 
|  | Scalar expx = exp(x.value()); | 
|  | return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log, | 
|  | using std::log; | 
|  | return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));) | 
|  |  | 
|  | template<typename DerType> | 
|  | inline Eigen::AutoDiffScalar< | 
|  | EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) > | 
|  | pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y) | 
|  | { | 
|  | using namespace Eigen; | 
|  | using std::pow; | 
|  | return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1))); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename DerTypeA,typename DerTypeB> | 
|  | inline AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> > | 
|  | atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b) | 
|  | { | 
|  | using std::atan2; | 
|  | typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar; | 
|  | typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS; | 
|  | PlainADS ret; | 
|  | ret.value() = atan2(a.value(), b.value()); | 
|  |  | 
|  | Scalar squared_hypot = a.value() * a.value() + b.value() * b.value(); | 
|  |  | 
|  | // if (squared_hypot==0) the derivation is undefined and the following results in a NaN: | 
|  | ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan, | 
|  | using std::tan; | 
|  | using std::cos; | 
|  | return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin, | 
|  | using std::sqrt; | 
|  | using std::asin; | 
|  | return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos, | 
|  | using std::sqrt; | 
|  | using std::acos; | 
|  | return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh, | 
|  | using std::cosh; | 
|  | using std::tanh; | 
|  | return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh, | 
|  | using std::sinh; | 
|  | using std::cosh; | 
|  | return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh, | 
|  | using std::sinh; | 
|  | using std::cosh; | 
|  | return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));) | 
|  |  | 
|  | #undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | 
|  |  | 
|  | template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> > | 
|  | : NumTraits< typename NumTraits<typename internal::remove_all<DerType>::type::Scalar>::Real > | 
|  | { | 
|  | typedef typename internal::remove_all<DerType>::type DerTypeCleaned; | 
|  | typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime, | 
|  | 0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real; | 
|  | typedef AutoDiffScalar<DerType> NonInteger; | 
|  | typedef AutoDiffScalar<DerType> Nested; | 
|  | typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal; | 
|  | enum{ | 
|  | RequireInitialization = 1 | 
|  | }; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | namespace std { | 
|  |  | 
|  | template <typename T> | 
|  | class numeric_limits<Eigen::AutoDiffScalar<T> > | 
|  | : public numeric_limits<typename T::Scalar> {}; | 
|  |  | 
|  | template <typename T> | 
|  | class numeric_limits<Eigen::AutoDiffScalar<T&> > | 
|  | : public numeric_limits<typename T::Scalar> {}; | 
|  |  | 
|  | }  // namespace std | 
|  |  | 
|  | #endif // EIGEN_AUTODIFF_SCALAR_H |