| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 David Harmon <dharmon@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H | 
 | #define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H | 
 |  | 
 | #include "../../../../Eigen/Dense" | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |   template<typename Scalar, typename RealScalar> struct arpack_wrapper; | 
 |   template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false> | 
 | class ArpackGeneralizedSelfAdjointEigenSolver | 
 | { | 
 | public: | 
 |   //typedef typename MatrixSolver::MatrixType MatrixType; | 
 |  | 
 |   /** \brief Scalar type for matrices of type \p MatrixType. */ | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::Index Index; | 
 |  | 
 |   /** \brief Real scalar type for \p MatrixType. | 
 |    * | 
 |    * This is just \c Scalar if #Scalar is real (e.g., \c float or | 
 |    * \c Scalar), and the type of the real part of \c Scalar if #Scalar is | 
 |    * complex. | 
 |    */ | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   /** \brief Type for vector of eigenvalues as returned by eigenvalues(). | 
 |    * | 
 |    * This is a column vector with entries of type #RealScalar. | 
 |    * The length of the vector is the size of \p nbrEigenvalues. | 
 |    */ | 
 |   typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType; | 
 |  | 
 |   /** \brief Default constructor. | 
 |    * | 
 |    * The default constructor is for cases in which the user intends to | 
 |    * perform decompositions via compute(). | 
 |    * | 
 |    */ | 
 |   ArpackGeneralizedSelfAdjointEigenSolver() | 
 |    : m_eivec(), | 
 |      m_eivalues(), | 
 |      m_isInitialized(false), | 
 |      m_eigenvectorsOk(false), | 
 |      m_nbrConverged(0), | 
 |      m_nbrIterations(0) | 
 |   { } | 
 |  | 
 |   /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix. | 
 |    * | 
 |    * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will | 
 |    *    computed. By default, the upper triangular part is used, but can be changed | 
 |    *    through the template parameter. | 
 |    * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem. | 
 |    * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. | 
 |    *    Must be less than the size of the input matrix, or an error is returned. | 
 |    * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with | 
 |    *    respective meanings to find the largest magnitude , smallest magnitude, | 
 |    *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this | 
 |    *    value can contain floating point value in string form, in which case the | 
 |    *    eigenvalues closest to this value will be found. | 
 |    * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
 |    * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which | 
 |    *    means machine precision. | 
 |    * | 
 |    * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar) | 
 |    * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if | 
 |    * \p options equals #ComputeEigenvectors. | 
 |    * | 
 |    */ | 
 |   ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B, | 
 |                                           Index nbrEigenvalues, std::string eigs_sigma="LM", | 
 |                                int options=ComputeEigenvectors, RealScalar tol=0.0) | 
 |     : m_eivec(), | 
 |       m_eivalues(), | 
 |       m_isInitialized(false), | 
 |       m_eigenvectorsOk(false), | 
 |       m_nbrConverged(0), | 
 |       m_nbrIterations(0) | 
 |   { | 
 |     compute(A, B, nbrEigenvalues, eigs_sigma, options, tol); | 
 |   } | 
 |  | 
 |   /** \brief Constructor; computes eigenvalues of given matrix. | 
 |    * | 
 |    * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will | 
 |    *    computed. By default, the upper triangular part is used, but can be changed | 
 |    *    through the template parameter. | 
 |    * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. | 
 |    *    Must be less than the size of the input matrix, or an error is returned. | 
 |    * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with | 
 |    *    respective meanings to find the largest magnitude , smallest magnitude, | 
 |    *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this | 
 |    *    value can contain floating point value in string form, in which case the | 
 |    *    eigenvalues closest to this value will be found. | 
 |    * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
 |    * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which | 
 |    *    means machine precision. | 
 |    * | 
 |    * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar) | 
 |    * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if | 
 |    * \p options equals #ComputeEigenvectors. | 
 |    * | 
 |    */ | 
 |  | 
 |   ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, | 
 |                                           Index nbrEigenvalues, std::string eigs_sigma="LM", | 
 |                                int options=ComputeEigenvectors, RealScalar tol=0.0) | 
 |     : m_eivec(), | 
 |       m_eivalues(), | 
 |       m_isInitialized(false), | 
 |       m_eigenvectorsOk(false), | 
 |       m_nbrConverged(0), | 
 |       m_nbrIterations(0) | 
 |   { | 
 |     compute(A, nbrEigenvalues, eigs_sigma, options, tol); | 
 |   } | 
 |  | 
 |  | 
 |   /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library. | 
 |    * | 
 |    * \param[in]  A  Selfadjoint matrix whose eigendecomposition is to be computed. | 
 |    * \param[in]  B  Selfadjoint matrix for generalized eigenvalues. | 
 |    * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. | 
 |    *    Must be less than the size of the input matrix, or an error is returned. | 
 |    * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with | 
 |    *    respective meanings to find the largest magnitude , smallest magnitude, | 
 |    *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this | 
 |    *    value can contain floating point value in string form, in which case the | 
 |    *    eigenvalues closest to this value will be found. | 
 |    * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
 |    * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which | 
 |    *    means machine precision. | 
 |    * | 
 |    * \returns    Reference to \c *this | 
 |    * | 
 |    * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK.  The eigenvalues() | 
 |    * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors, | 
 |    * then the eigenvectors are also computed and can be retrieved by | 
 |    * calling eigenvectors(). | 
 |    * | 
 |    */ | 
 |   ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B, | 
 |                                                    Index nbrEigenvalues, std::string eigs_sigma="LM", | 
 |                                         int options=ComputeEigenvectors, RealScalar tol=0.0); | 
 |    | 
 |   /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library. | 
 |    * | 
 |    * \param[in]  A  Selfadjoint matrix whose eigendecomposition is to be computed. | 
 |    * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. | 
 |    *    Must be less than the size of the input matrix, or an error is returned. | 
 |    * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with | 
 |    *    respective meanings to find the largest magnitude , smallest magnitude, | 
 |    *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this | 
 |    *    value can contain floating point value in string form, in which case the | 
 |    *    eigenvalues closest to this value will be found. | 
 |    * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
 |    * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which | 
 |    *    means machine precision. | 
 |    * | 
 |    * \returns    Reference to \c *this | 
 |    * | 
 |    * This function computes the eigenvalues of \p A using ARPACK.  The eigenvalues() | 
 |    * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors, | 
 |    * then the eigenvectors are also computed and can be retrieved by | 
 |    * calling eigenvectors(). | 
 |    * | 
 |    */ | 
 |   ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, | 
 |                                                    Index nbrEigenvalues, std::string eigs_sigma="LM", | 
 |                                         int options=ComputeEigenvectors, RealScalar tol=0.0); | 
 |  | 
 |  | 
 |   /** \brief Returns the eigenvectors of given matrix. | 
 |    * | 
 |    * \returns  A const reference to the matrix whose columns are the eigenvectors. | 
 |    * | 
 |    * \pre The eigenvectors have been computed before. | 
 |    * | 
 |    * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding | 
 |    * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The | 
 |    * eigenvectors are normalized to have (Euclidean) norm equal to one. If | 
 |    * this object was used to solve the eigenproblem for the selfadjoint | 
 |    * matrix \f$ A \f$, then the matrix returned by this function is the | 
 |    * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$. | 
 |    * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$ | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out | 
 |    * | 
 |    * \sa eigenvalues() | 
 |    */ | 
 |   const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const | 
 |   { | 
 |     eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); | 
 |     eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 |     return m_eivec; | 
 |   } | 
 |  | 
 |   /** \brief Returns the eigenvalues of given matrix. | 
 |    * | 
 |    * \returns A const reference to the column vector containing the eigenvalues. | 
 |    * | 
 |    * \pre The eigenvalues have been computed before. | 
 |    * | 
 |    * The eigenvalues are repeated according to their algebraic multiplicity, | 
 |    * so there are as many eigenvalues as rows in the matrix. The eigenvalues | 
 |    * are sorted in increasing order. | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out | 
 |    * | 
 |    * \sa eigenvectors(), MatrixBase::eigenvalues() | 
 |    */ | 
 |   const Matrix<Scalar, Dynamic, 1>& eigenvalues() const | 
 |   { | 
 |     eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); | 
 |     return m_eivalues; | 
 |   } | 
 |  | 
 |   /** \brief Computes the positive-definite square root of the matrix. | 
 |    * | 
 |    * \returns the positive-definite square root of the matrix | 
 |    * | 
 |    * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
 |    * have been computed before. | 
 |    * | 
 |    * The square root of a positive-definite matrix \f$ A \f$ is the | 
 |    * positive-definite matrix whose square equals \f$ A \f$. This function | 
 |    * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the | 
 |    * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out | 
 |    * | 
 |    * \sa operatorInverseSqrt(), | 
 |    *     \ref MatrixFunctions_Module "MatrixFunctions Module" | 
 |    */ | 
 |   Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const | 
 |   { | 
 |     eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
 |     eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 |     return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
 |   } | 
 |  | 
 |   /** \brief Computes the inverse square root of the matrix. | 
 |    * | 
 |    * \returns the inverse positive-definite square root of the matrix | 
 |    * | 
 |    * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
 |    * have been computed before. | 
 |    * | 
 |    * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to | 
 |    * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is | 
 |    * cheaper than first computing the square root with operatorSqrt() and | 
 |    * then its inverse with MatrixBase::inverse(). | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out | 
 |    * | 
 |    * \sa operatorSqrt(), MatrixBase::inverse(), | 
 |    *     \ref MatrixFunctions_Module "MatrixFunctions Module" | 
 |    */ | 
 |   Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const | 
 |   { | 
 |     eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
 |     eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 |     return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
 |   } | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
 |    */ | 
 |   ComputationInfo info() const | 
 |   { | 
 |     eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   size_t getNbrConvergedEigenValues() const | 
 |   { return m_nbrConverged; } | 
 |  | 
 |   size_t getNbrIterations() const | 
 |   { return m_nbrIterations; } | 
 |  | 
 | protected: | 
 |   Matrix<Scalar, Dynamic, Dynamic> m_eivec; | 
 |   Matrix<Scalar, Dynamic, 1> m_eivalues; | 
 |   ComputationInfo m_info; | 
 |   bool m_isInitialized; | 
 |   bool m_eigenvectorsOk; | 
 |  | 
 |   size_t m_nbrConverged; | 
 |   size_t m_nbrIterations; | 
 | }; | 
 |  | 
 |  | 
 |  | 
 |  | 
 |  | 
 | template<typename MatrixType, typename MatrixSolver, bool BisSPD> | 
 | ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>& | 
 |     ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD> | 
 | ::compute(const MatrixType& A, Index nbrEigenvalues, | 
 |           std::string eigs_sigma, int options, RealScalar tol) | 
 | { | 
 |     MatrixType B(0,0); | 
 |     compute(A, B, nbrEigenvalues, eigs_sigma, options, tol); | 
 |      | 
 |     return *this; | 
 | } | 
 |  | 
 |  | 
 | template<typename MatrixType, typename MatrixSolver, bool BisSPD> | 
 | ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>& | 
 |     ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD> | 
 | ::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues, | 
 |           std::string eigs_sigma, int options, RealScalar tol) | 
 | { | 
 |   eigen_assert(A.cols() == A.rows()); | 
 |   eigen_assert(B.cols() == B.rows()); | 
 |   eigen_assert(B.rows() == 0 || A.cols() == B.rows()); | 
 |   eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0 | 
 |             && (options & EigVecMask) != EigVecMask | 
 |             && "invalid option parameter"); | 
 |  | 
 |   bool isBempty = (B.rows() == 0) || (B.cols() == 0); | 
 |  | 
 |   // For clarity, all parameters match their ARPACK name | 
 |   // | 
 |   // Always 0 on the first call | 
 |   // | 
 |   int ido = 0; | 
 |  | 
 |   int n = (int)A.cols(); | 
 |  | 
 |   // User options: "LA", "SA", "SM", "LM", "BE" | 
 |   // | 
 |   char whch[3] = "LM"; | 
 |      | 
 |   // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 } | 
 |   // | 
 |   RealScalar sigma = 0.0; | 
 |  | 
 |   if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) | 
 |   { | 
 |       eigs_sigma[0] = toupper(eigs_sigma[0]); | 
 |       eigs_sigma[1] = toupper(eigs_sigma[1]); | 
 |  | 
 |       // In the following special case we're going to invert the problem, since solving | 
 |       // for larger magnitude is much much faster | 
 |       // i.e., if 'SM' is specified, we're going to really use 'LM', the default | 
 |       // | 
 |       if (eigs_sigma.substr(0,2) != "SM") | 
 |       { | 
 |           whch[0] = eigs_sigma[0]; | 
 |           whch[1] = eigs_sigma[1]; | 
 |       } | 
 |   } | 
 |   else | 
 |   { | 
 |       eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!"); | 
 |  | 
 |       // If it's not scalar values, then the user may be explicitly | 
 |       // specifying the sigma value to cluster the evs around | 
 |       // | 
 |       sigma = atof(eigs_sigma.c_str()); | 
 |  | 
 |       // If atof fails, it returns 0.0, which is a fine default | 
 |       // | 
 |   } | 
 |  | 
 |   // "I" means normal eigenvalue problem, "G" means generalized | 
 |   // | 
 |   char bmat[2] = "I"; | 
 |   if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD)) | 
 |       bmat[0] = 'G'; | 
 |  | 
 |   // Now we determine the mode to use | 
 |   // | 
 |   int mode = (bmat[0] == 'G') + 1; | 
 |   if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))) | 
 |   { | 
 |       // We're going to use shift-and-invert mode, and basically find | 
 |       // the largest eigenvalues of the inverse operator | 
 |       // | 
 |       mode = 3; | 
 |   } | 
 |  | 
 |   // The user-specified number of eigenvalues/vectors to compute | 
 |   // | 
 |   int nev = (int)nbrEigenvalues; | 
 |  | 
 |   // Allocate space for ARPACK to store the residual | 
 |   // | 
 |   Scalar *resid = new Scalar[n]; | 
 |  | 
 |   // Number of Lanczos vectors, must satisfy nev < ncv <= n | 
 |   // Note that this indicates that nev != n, and we cannot compute | 
 |   // all eigenvalues of a mtrix | 
 |   // | 
 |   int ncv = std::min(std::max(2*nev, 20), n); | 
 |  | 
 |   // The working n x ncv matrix, also store the final eigenvectors (if computed) | 
 |   // | 
 |   Scalar *v = new Scalar[n*ncv]; | 
 |   int ldv = n; | 
 |  | 
 |   // Working space | 
 |   // | 
 |   Scalar *workd = new Scalar[3*n]; | 
 |   int lworkl = ncv*ncv+8*ncv; // Must be at least this length | 
 |   Scalar *workl = new Scalar[lworkl]; | 
 |  | 
 |   int *iparam= new int[11]; | 
 |   iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it | 
 |   iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1))); | 
 |   iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert | 
 |  | 
 |   // Used during reverse communicate to notify where arrays start | 
 |   // | 
 |   int *ipntr = new int[11];  | 
 |  | 
 |   // Error codes are returned in here, initial value of 0 indicates a random initial | 
 |   // residual vector is used, any other values means resid contains the initial residual | 
 |   // vector, possibly from a previous run | 
 |   // | 
 |   int info = 0; | 
 |  | 
 |   Scalar scale = 1.0; | 
 |   //if (!isBempty) | 
 |   //{ | 
 |   //Scalar scale = B.norm() / std::sqrt(n); | 
 |   //scale = std::pow(2, std::floor(std::log(scale+1))); | 
 |   ////M /= scale; | 
 |   //for (size_t i=0; i<(size_t)B.outerSize(); i++) | 
 |   //    for (typename MatrixType::InnerIterator it(B, i); it; ++it) | 
 |   //        it.valueRef() /= scale; | 
 |   //} | 
 |  | 
 |   MatrixSolver OP; | 
 |   if (mode == 1 || mode == 2) | 
 |   { | 
 |       if (!isBempty) | 
 |           OP.compute(B); | 
 |   } | 
 |   else if (mode == 3) | 
 |   { | 
 |       if (sigma == 0.0) | 
 |       { | 
 |           OP.compute(A); | 
 |       } | 
 |       else | 
 |       { | 
 |           // Note: We will never enter here because sigma must be 0.0 | 
 |           // | 
 |           if (isBempty) | 
 |           { | 
 |             MatrixType AminusSigmaB(A); | 
 |             for (Index i=0; i<A.rows(); ++i) | 
 |                 AminusSigmaB.coeffRef(i,i) -= sigma; | 
 |              | 
 |             OP.compute(AminusSigmaB); | 
 |           } | 
 |           else | 
 |           { | 
 |               MatrixType AminusSigmaB = A - sigma * B; | 
 |               OP.compute(AminusSigmaB); | 
 |           } | 
 |       } | 
 |   } | 
 |   | 
 |   if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success) | 
 |       std::cout << "Error factoring matrix" << std::endl; | 
 |  | 
 |   do | 
 |   { | 
 |     internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid,  | 
 |                                                         &ncv, v, &ldv, iparam, ipntr, workd, workl, | 
 |                                                         &lworkl, &info); | 
 |  | 
 |     if (ido == -1 || ido == 1) | 
 |     { | 
 |       Scalar *in  = workd + ipntr[0] - 1; | 
 |       Scalar *out = workd + ipntr[1] - 1; | 
 |  | 
 |       if (ido == 1 && mode != 2) | 
 |       { | 
 |           Scalar *out2 = workd + ipntr[2] - 1; | 
 |           if (isBempty || mode == 1) | 
 |             Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
 |           else | 
 |             Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
 |            | 
 |           in = workd + ipntr[2] - 1; | 
 |       } | 
 |  | 
 |       if (mode == 1) | 
 |       { | 
 |         if (isBempty) | 
 |         { | 
 |           // OP = A | 
 |           // | 
 |           Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
 |         } | 
 |         else | 
 |         { | 
 |           // OP = L^{-1}AL^{-T} | 
 |           // | 
 |           internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out); | 
 |         } | 
 |       } | 
 |       else if (mode == 2) | 
 |       { | 
 |         if (ido == 1) | 
 |           Matrix<Scalar, Dynamic, 1>::Map(in, n)  = A * Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
 |          | 
 |         // OP = B^{-1} A | 
 |         // | 
 |         Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); | 
 |       } | 
 |       else if (mode == 3) | 
 |       { | 
 |         // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I) | 
 |         // The B * in is already computed and stored at in if ido == 1 | 
 |         // | 
 |         if (ido == 1 || isBempty) | 
 |           Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); | 
 |         else | 
 |           Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n)); | 
 |       } | 
 |     } | 
 |     else if (ido == 2) | 
 |     { | 
 |       Scalar *in  = workd + ipntr[0] - 1; | 
 |       Scalar *out = workd + ipntr[1] - 1; | 
 |  | 
 |       if (isBempty || mode == 1) | 
 |         Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
 |       else | 
 |         Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
 |     } | 
 |   } while (ido != 99); | 
 |  | 
 |   if (info == 1) | 
 |     m_info = NoConvergence; | 
 |   else if (info == 3) | 
 |     m_info = NumericalIssue; | 
 |   else if (info < 0) | 
 |     m_info = InvalidInput; | 
 |   else if (info != 0) | 
 |     eigen_assert(false && "Unknown ARPACK return value!"); | 
 |   else | 
 |   { | 
 |     // Do we compute eigenvectors or not? | 
 |     // | 
 |     int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors; | 
 |  | 
 |     // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK)) | 
 |     // | 
 |     char howmny[2] = "A";  | 
 |  | 
 |     // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK) | 
 |     // | 
 |     int *select = new int[ncv]; | 
 |  | 
 |     // Final eigenvalues | 
 |     // | 
 |     m_eivalues.resize(nev, 1); | 
 |  | 
 |     internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv, | 
 |                                                         &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv, | 
 |                                                         v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info); | 
 |  | 
 |     if (info == -14) | 
 |       m_info = NoConvergence; | 
 |     else if (info != 0) | 
 |       m_info = InvalidInput; | 
 |     else | 
 |     { | 
 |       if (rvec) | 
 |       { | 
 |         m_eivec.resize(A.rows(), nev); | 
 |         for (int i=0; i<nev; i++) | 
 |           for (int j=0; j<n; j++) | 
 |             m_eivec(j,i) = v[i*n+j] / scale; | 
 |        | 
 |         if (mode == 1 && !isBempty && BisSPD) | 
 |           internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data()); | 
 |  | 
 |         m_eigenvectorsOk = true; | 
 |       } | 
 |  | 
 |       m_nbrIterations = iparam[2]; | 
 |       m_nbrConverged  = iparam[4]; | 
 |  | 
 |       m_info = Success; | 
 |     } | 
 |  | 
 |     delete[] select; | 
 |   } | 
 |  | 
 |   delete[] v; | 
 |   delete[] iparam; | 
 |   delete[] ipntr; | 
 |   delete[] workd; | 
 |   delete[] workl; | 
 |   delete[] resid; | 
 |  | 
 |   m_isInitialized = true; | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 |  | 
 | // Single precision | 
 | // | 
 | extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which, | 
 |     int *nev, float *tol, float *resid, int *ncv, | 
 |     float *v, int *ldv, int *iparam, int *ipntr, | 
 |     float *workd, float *workl, int *lworkl, | 
 |     int *info); | 
 |  | 
 | extern "C" void sseupd_(int *rvec, char *All, int *select, float *d, | 
 |     float *z, int *ldz, float *sigma,  | 
 |     char *bmat, int *n, char *which, int *nev, | 
 |     float *tol, float *resid, int *ncv, float *v, | 
 |     int *ldv, int *iparam, int *ipntr, float *workd, | 
 |     float *workl, int *lworkl, int *ierr); | 
 |  | 
 | // Double precision | 
 | // | 
 | extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which, | 
 |     int *nev, double *tol, double *resid, int *ncv, | 
 |     double *v, int *ldv, int *iparam, int *ipntr, | 
 |     double *workd, double *workl, int *lworkl, | 
 |     int *info); | 
 |  | 
 | extern "C" void dseupd_(int *rvec, char *All, int *select, double *d, | 
 |     double *z, int *ldz, double *sigma,  | 
 |     char *bmat, int *n, char *which, int *nev, | 
 |     double *tol, double *resid, int *ncv, double *v, | 
 |     int *ldv, int *iparam, int *ipntr, double *workd, | 
 |     double *workl, int *lworkl, int *ierr); | 
 |  | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename Scalar, typename RealScalar> struct arpack_wrapper | 
 | { | 
 |   static inline void saupd(int *ido, char *bmat, int *n, char *which, | 
 |       int *nev, RealScalar *tol, Scalar *resid, int *ncv, | 
 |       Scalar *v, int *ldv, int *iparam, int *ipntr, | 
 |       Scalar *workd, Scalar *workl, int *lworkl, int *info) | 
 |   {  | 
 |     EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) | 
 |   } | 
 |  | 
 |   static inline void seupd(int *rvec, char *All, int *select, Scalar *d, | 
 |       Scalar *z, int *ldz, RealScalar *sigma, | 
 |       char *bmat, int *n, char *which, int *nev, | 
 |       RealScalar *tol, Scalar *resid, int *ncv, Scalar *v, | 
 |       int *ldv, int *iparam, int *ipntr, Scalar *workd, | 
 |       Scalar *workl, int *lworkl, int *ierr) | 
 |   { | 
 |     EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct arpack_wrapper<float, float> | 
 | { | 
 |   static inline void saupd(int *ido, char *bmat, int *n, char *which, | 
 |       int *nev, float *tol, float *resid, int *ncv, | 
 |       float *v, int *ldv, int *iparam, int *ipntr, | 
 |       float *workd, float *workl, int *lworkl, int *info) | 
 |   { | 
 |     ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info); | 
 |   } | 
 |  | 
 |   static inline void seupd(int *rvec, char *All, int *select, float *d, | 
 |       float *z, int *ldz, float *sigma, | 
 |       char *bmat, int *n, char *which, int *nev, | 
 |       float *tol, float *resid, int *ncv, float *v, | 
 |       int *ldv, int *iparam, int *ipntr, float *workd, | 
 |       float *workl, int *lworkl, int *ierr) | 
 |   { | 
 |     sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, | 
 |         workd, workl, lworkl, ierr); | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct arpack_wrapper<double, double> | 
 | { | 
 |   static inline void saupd(int *ido, char *bmat, int *n, char *which, | 
 |       int *nev, double *tol, double *resid, int *ncv, | 
 |       double *v, int *ldv, int *iparam, int *ipntr, | 
 |       double *workd, double *workl, int *lworkl, int *info) | 
 |   { | 
 |     dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info); | 
 |   } | 
 |  | 
 |   static inline void seupd(int *rvec, char *All, int *select, double *d, | 
 |       double *z, int *ldz, double *sigma, | 
 |       char *bmat, int *n, char *which, int *nev, | 
 |       double *tol, double *resid, int *ncv, double *v, | 
 |       int *ldv, int *iparam, int *ipntr, double *workd, | 
 |       double *workl, int *lworkl, int *ierr) | 
 |   { | 
 |     dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, | 
 |         workd, workl, lworkl, ierr); | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> | 
 | struct OP | 
 | { | 
 |     static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out); | 
 |     static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs); | 
 | }; | 
 |  | 
 | template<typename MatrixSolver, typename MatrixType, typename Scalar> | 
 | struct OP<MatrixSolver, MatrixType, Scalar, true> | 
 | { | 
 |   static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out) | 
 | { | 
 |     // OP = L^{-1} A L^{-T}  (B = LL^T) | 
 |     // | 
 |     // First solve L^T out = in | 
 |     // | 
 |     Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); | 
 |     Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n); | 
 |  | 
 |     // Then compute out = A out | 
 |     // | 
 |     Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n); | 
 |  | 
 |     // Then solve L out = out | 
 |     // | 
 |     Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n); | 
 |     Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n)); | 
 | } | 
 |  | 
 |   static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs) | 
 | { | 
 |     // Solve L^T out = in | 
 |     // | 
 |     Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k)); | 
 |     Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k); | 
 | } | 
 |  | 
 | }; | 
 |  | 
 | template<typename MatrixSolver, typename MatrixType, typename Scalar> | 
 | struct OP<MatrixSolver, MatrixType, Scalar, false> | 
 | { | 
 |   static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out) | 
 | { | 
 |     eigen_assert(false && "Should never be in here..."); | 
 | } | 
 |  | 
 |   static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs) | 
 | { | 
 |     eigen_assert(false && "Should never be in here..."); | 
 | } | 
 |  | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H | 
 |  |