| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_MATRIX_EXPONENTIAL | 
 | #define EIGEN_MATRIX_EXPONENTIAL | 
 |  | 
 | #include "StemFunction.h" | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 | namespace internal { | 
 |  | 
 | /** \brief Scaling operator. | 
 |  * | 
 |  * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$. | 
 |  */ | 
 | template <typename RealScalar> | 
 | struct MatrixExponentialScalingOp | 
 | { | 
 |   /** \brief Constructor. | 
 |    * | 
 |    * \param[in] squarings  The integer \f$ s \f$ in this document. | 
 |    */ | 
 |   MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { } | 
 |  | 
 |  | 
 |   /** \brief Scale a matrix coefficient. | 
 |    * | 
 |    * \param[in,out] x  The scalar to be scaled, becoming \f$ 2^{-s} x \f$. | 
 |    */ | 
 |   inline const RealScalar operator() (const RealScalar& x) const | 
 |   { | 
 |     using std::ldexp; | 
 |     return ldexp(x, -m_squarings); | 
 |   } | 
 |  | 
 |   typedef std::complex<RealScalar> ComplexScalar; | 
 |  | 
 |   /** \brief Scale a matrix coefficient. | 
 |    * | 
 |    * \param[in,out] x  The scalar to be scaled, becoming \f$ 2^{-s} x \f$. | 
 |    */ | 
 |   inline const ComplexScalar operator() (const ComplexScalar& x) const | 
 |   { | 
 |     using std::ldexp; | 
 |     return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings)); | 
 |   } | 
 |  | 
 |   private: | 
 |     int m_squarings; | 
 | }; | 
 |  | 
 | /** \brief Compute the (3,3)-Padé approximant to the exponential. | 
 |  * | 
 |  *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
 |  *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
 |  */ | 
 | template <typename MatA, typename MatU, typename MatV> | 
 | void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V) | 
 | { | 
 |   typedef typename MatA::PlainObject MatrixType; | 
 |   typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar; | 
 |   const RealScalar b[] = {120.L, 60.L, 12.L, 1.L}; | 
 |   const MatrixType A2 = A * A; | 
 |   const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); | 
 |   U.noalias() = A * tmp; | 
 |   V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); | 
 | } | 
 |  | 
 | /** \brief Compute the (5,5)-Padé approximant to the exponential. | 
 |  * | 
 |  *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
 |  *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
 |  */ | 
 | template <typename MatA, typename MatU, typename MatV> | 
 | void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V) | 
 | { | 
 |   typedef typename MatA::PlainObject MatrixType; | 
 |   typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; | 
 |   const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L}; | 
 |   const MatrixType A2 = A * A; | 
 |   const MatrixType A4 = A2 * A2; | 
 |   const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); | 
 |   U.noalias() = A * tmp; | 
 |   V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); | 
 | } | 
 |  | 
 | /** \brief Compute the (7,7)-Padé approximant to the exponential. | 
 |  * | 
 |  *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
 |  *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
 |  */ | 
 | template <typename MatA, typename MatU, typename MatV> | 
 | void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V) | 
 | { | 
 |   typedef typename MatA::PlainObject MatrixType; | 
 |   typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; | 
 |   const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L}; | 
 |   const MatrixType A2 = A * A; | 
 |   const MatrixType A4 = A2 * A2; | 
 |   const MatrixType A6 = A4 * A2; | 
 |   const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2  | 
 |     + b[1] * MatrixType::Identity(A.rows(), A.cols()); | 
 |   U.noalias() = A * tmp; | 
 |   V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); | 
 |  | 
 | } | 
 |  | 
 | /** \brief Compute the (9,9)-Padé approximant to the exponential. | 
 |  * | 
 |  *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
 |  *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
 |  */ | 
 | template <typename MatA, typename MatU, typename MatV> | 
 | void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V) | 
 | { | 
 |   typedef typename MatA::PlainObject MatrixType; | 
 |   typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; | 
 |   const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L, | 
 |                           2162160.L, 110880.L, 3960.L, 90.L, 1.L}; | 
 |   const MatrixType A2 = A * A; | 
 |   const MatrixType A4 = A2 * A2; | 
 |   const MatrixType A6 = A4 * A2; | 
 |   const MatrixType A8 = A6 * A2; | 
 |   const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2  | 
 |     + b[1] * MatrixType::Identity(A.rows(), A.cols()); | 
 |   U.noalias() = A * tmp; | 
 |   V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); | 
 | } | 
 |  | 
 | /** \brief Compute the (13,13)-Padé approximant to the exponential. | 
 |  * | 
 |  *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
 |  *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
 |  */ | 
 | template <typename MatA, typename MatU, typename MatV> | 
 | void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V) | 
 | { | 
 |   typedef typename MatA::PlainObject MatrixType; | 
 |   typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; | 
 |   const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L, | 
 |                           1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L, | 
 |                           33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L}; | 
 |   const MatrixType A2 = A * A; | 
 |   const MatrixType A4 = A2 * A2; | 
 |   const MatrixType A6 = A4 * A2; | 
 |   V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage | 
 |   MatrixType tmp = A6 * V; | 
 |   tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); | 
 |   U.noalias() = A * tmp; | 
 |   tmp = b[12] * A6 + b[10] * A4 + b[8] * A2; | 
 |   V.noalias() = A6 * tmp; | 
 |   V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); | 
 | } | 
 |  | 
 | /** \brief Compute the (17,17)-Padé approximant to the exponential. | 
 |  * | 
 |  *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
 |  *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
 |  * | 
 |  *  This function activates only if your long double is double-double or quadruple. | 
 |  */ | 
 | #if LDBL_MANT_DIG > 64 | 
 | template <typename MatA, typename MatU, typename MatV> | 
 | void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V) | 
 | { | 
 |   typedef typename MatA::PlainObject MatrixType; | 
 |   typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; | 
 |   const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, | 
 |                           100610229646136770560000.L, 15720348382208870400000.L, | 
 |                           1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, | 
 |                           595373117923584000.L, 27563570274240000.L, 1060137318240000.L, | 
 |                           33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, | 
 |                           46512.L, 306.L, 1.L}; | 
 |   const MatrixType A2 = A * A; | 
 |   const MatrixType A4 = A2 * A2; | 
 |   const MatrixType A6 = A4 * A2; | 
 |   const MatrixType A8 = A4 * A4; | 
 |   V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage | 
 |   MatrixType tmp = A8 * V; | 
 |   tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2  | 
 |     + b[1] * MatrixType::Identity(A.rows(), A.cols()); | 
 |   U.noalias() = A * tmp; | 
 |   tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2; | 
 |   V.noalias() = tmp * A8; | 
 |   V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2  | 
 |     + b[0] * MatrixType::Identity(A.rows(), A.cols()); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real> | 
 | struct matrix_exp_computeUV | 
 | { | 
 |   /** \brief Compute Padé approximant to the exponential. | 
 |     * | 
 |     * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé | 
 |     * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$ | 
 |     * denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings | 
 |     * are chosen such that the approximation error is no more than the round-off error. | 
 |     */ | 
 |   static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings); | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | struct matrix_exp_computeUV<MatrixType, float> | 
 | { | 
 |   template <typename ArgType> | 
 |   static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) | 
 |   { | 
 |     using std::frexp; | 
 |     using std::pow; | 
 |     const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); | 
 |     squarings = 0; | 
 |     if (l1norm < 4.258730016922831e-001f) { | 
 |       matrix_exp_pade3(arg, U, V); | 
 |     } else if (l1norm < 1.880152677804762e+000f) { | 
 |       matrix_exp_pade5(arg, U, V); | 
 |     } else { | 
 |       const float maxnorm = 3.925724783138660f; | 
 |       frexp(l1norm / maxnorm, &squarings); | 
 |       if (squarings < 0) squarings = 0; | 
 |       MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings)); | 
 |       matrix_exp_pade7(A, U, V); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | struct matrix_exp_computeUV<MatrixType, double> | 
 | { | 
 |   typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; | 
 |   template <typename ArgType> | 
 |   static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) | 
 |   { | 
 |     using std::frexp; | 
 |     using std::pow; | 
 |     const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); | 
 |     squarings = 0; | 
 |     if (l1norm < 1.495585217958292e-002) { | 
 |       matrix_exp_pade3(arg, U, V); | 
 |     } else if (l1norm < 2.539398330063230e-001) { | 
 |       matrix_exp_pade5(arg, U, V); | 
 |     } else if (l1norm < 9.504178996162932e-001) { | 
 |       matrix_exp_pade7(arg, U, V); | 
 |     } else if (l1norm < 2.097847961257068e+000) { | 
 |       matrix_exp_pade9(arg, U, V); | 
 |     } else { | 
 |       const RealScalar maxnorm = 5.371920351148152; | 
 |       frexp(l1norm / maxnorm, &squarings); | 
 |       if (squarings < 0) squarings = 0; | 
 |       MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings)); | 
 |       matrix_exp_pade13(A, U, V); | 
 |     } | 
 |   } | 
 | }; | 
 |    | 
 | template <typename MatrixType> | 
 | struct matrix_exp_computeUV<MatrixType, long double> | 
 | { | 
 |   template <typename ArgType> | 
 |   static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) | 
 |   { | 
 | #if   LDBL_MANT_DIG == 53   // double precision | 
 |     matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings); | 
 |    | 
 | #else | 
 |    | 
 |     using std::frexp; | 
 |     using std::pow; | 
 |     const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); | 
 |     squarings = 0; | 
 |    | 
 | #if LDBL_MANT_DIG <= 64   // extended precision | 
 |    | 
 |     if (l1norm < 4.1968497232266989671e-003L) { | 
 |       matrix_exp_pade3(arg, U, V); | 
 |     } else if (l1norm < 1.1848116734693823091e-001L) { | 
 |       matrix_exp_pade5(arg, U, V); | 
 |     } else if (l1norm < 5.5170388480686700274e-001L) { | 
 |       matrix_exp_pade7(arg, U, V); | 
 |     } else if (l1norm < 1.3759868875587845383e+000L) { | 
 |       matrix_exp_pade9(arg, U, V); | 
 |     } else { | 
 |       const long double maxnorm = 4.0246098906697353063L; | 
 |       frexp(l1norm / maxnorm, &squarings); | 
 |       if (squarings < 0) squarings = 0; | 
 |       MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); | 
 |       matrix_exp_pade13(A, U, V); | 
 |     } | 
 |    | 
 | #elif LDBL_MANT_DIG <= 106  // double-double | 
 |    | 
 |     if (l1norm < 3.2787892205607026992947488108213e-005L) { | 
 |       matrix_exp_pade3(arg, U, V); | 
 |     } else if (l1norm < 6.4467025060072760084130906076332e-003L) { | 
 |       matrix_exp_pade5(arg, U, V); | 
 |     } else if (l1norm < 6.8988028496595374751374122881143e-002L) { | 
 |       matrix_exp_pade7(arg, U, V); | 
 |     } else if (l1norm < 2.7339737518502231741495857201670e-001L) { | 
 |       matrix_exp_pade9(arg, U, V); | 
 |     } else if (l1norm < 1.3203382096514474905666448850278e+000L) { | 
 |       matrix_exp_pade13(arg, U, V); | 
 |     } else { | 
 |       const long double maxnorm = 3.2579440895405400856599663723517L; | 
 |       frexp(l1norm / maxnorm, &squarings); | 
 |       if (squarings < 0) squarings = 0; | 
 |       MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); | 
 |       matrix_exp_pade17(A, U, V); | 
 |     } | 
 |    | 
 | #elif LDBL_MANT_DIG <= 113  // quadruple precision | 
 |    | 
 |     if (l1norm < 1.639394610288918690547467954466970e-005L) { | 
 |       matrix_exp_pade3(arg, U, V); | 
 |     } else if (l1norm < 4.253237712165275566025884344433009e-003L) { | 
 |       matrix_exp_pade5(arg, U, V); | 
 |     } else if (l1norm < 5.125804063165764409885122032933142e-002L) { | 
 |       matrix_exp_pade7(arg, U, V); | 
 |     } else if (l1norm < 2.170000765161155195453205651889853e-001L) { | 
 |       matrix_exp_pade9(arg, U, V); | 
 |     } else if (l1norm < 1.125358383453143065081397882891878e+000L) { | 
 |       matrix_exp_pade13(arg, U, V); | 
 |     } else { | 
 |       const long double maxnorm = 2.884233277829519311757165057717815L; | 
 |       frexp(l1norm / maxnorm, &squarings); | 
 |       if (squarings < 0) squarings = 0; | 
 |       MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); | 
 |       matrix_exp_pade17(A, U, V); | 
 |     } | 
 |    | 
 | #else | 
 |    | 
 |     // this case should be handled in compute() | 
 |     eigen_assert(false && "Bug in MatrixExponential");  | 
 |    | 
 | #endif | 
 | #endif  // LDBL_MANT_DIG | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T> struct is_exp_known_type : false_type {}; | 
 | template<> struct is_exp_known_type<float> : true_type {}; | 
 | template<> struct is_exp_known_type<double> : true_type {}; | 
 | #if LDBL_MANT_DIG <= 113 | 
 | template<> struct is_exp_known_type<long double> : true_type {}; | 
 | #endif | 
 |  | 
 | template <typename ArgType, typename ResultType> | 
 | void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type | 
 | { | 
 |   typedef typename ArgType::PlainObject MatrixType; | 
 |   MatrixType U, V; | 
 |   int squarings; | 
 |   matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V) | 
 |   MatrixType numer = U + V; | 
 |   MatrixType denom = -U + V; | 
 |   result = denom.partialPivLu().solve(numer); | 
 |   for (int i=0; i<squarings; i++) | 
 |     result *= result;   // undo scaling by repeated squaring | 
 | } | 
 |  | 
 |  | 
 | /* Computes the matrix exponential | 
 |  * | 
 |  * \param arg    argument of matrix exponential (should be plain object) | 
 |  * \param result variable in which result will be stored | 
 |  */ | 
 | template <typename ArgType, typename ResultType> | 
 | void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default | 
 | { | 
 |   typedef typename ArgType::PlainObject MatrixType; | 
 |   typedef typename traits<MatrixType>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef typename std::complex<RealScalar> ComplexScalar; | 
 |   result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>); | 
 | } | 
 |  | 
 | } // end namespace Eigen::internal | 
 |  | 
 | /** \ingroup MatrixFunctions_Module | 
 |   * | 
 |   * \brief Proxy for the matrix exponential of some matrix (expression). | 
 |   * | 
 |   * \tparam Derived  Type of the argument to the matrix exponential. | 
 |   * | 
 |   * This class holds the argument to the matrix exponential until it is assigned or evaluated for | 
 |   * some other reason (so the argument should not be changed in the meantime). It is the return type | 
 |   * of MatrixBase::exp() and most of the time this is the only way it is used. | 
 |   */ | 
 | template<typename Derived> struct MatrixExponentialReturnValue | 
 | : public ReturnByValue<MatrixExponentialReturnValue<Derived> > | 
 | { | 
 |   public: | 
 |     /** \brief Constructor. | 
 |       * | 
 |       * \param src %Matrix (expression) forming the argument of the matrix exponential. | 
 |       */ | 
 |     MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } | 
 |  | 
 |     /** \brief Compute the matrix exponential. | 
 |       * | 
 |       * \param result the matrix exponential of \p src in the constructor. | 
 |       */ | 
 |     template <typename ResultType> | 
 |     inline void evalTo(ResultType& result) const | 
 |     { | 
 |       const typename internal::nested_eval<Derived, 10>::type tmp(m_src); | 
 |       internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::RealScalar>()); | 
 |     } | 
 |  | 
 |     Index rows() const { return m_src.rows(); } | 
 |     Index cols() const { return m_src.cols(); } | 
 |  | 
 |   protected: | 
 |     const typename internal::ref_selector<Derived>::type m_src; | 
 | }; | 
 |  | 
 | namespace internal { | 
 | template<typename Derived> | 
 | struct traits<MatrixExponentialReturnValue<Derived> > | 
 | { | 
 |   typedef typename Derived::PlainObject ReturnType; | 
 | }; | 
 | } | 
 |  | 
 | template <typename Derived> | 
 | const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const | 
 | { | 
 |   eigen_assert(rows() == cols()); | 
 |   return MatrixExponentialReturnValue<Derived>(derived()); | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_MATRIX_EXPONENTIAL |