|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Scalar> | 
|  | void lmpar( | 
|  | Matrix< Scalar, Dynamic, Dynamic > &r, | 
|  | const VectorXi &ipvt, | 
|  | const Matrix< Scalar, Dynamic, 1 >  &diag, | 
|  | const Matrix< Scalar, Dynamic, 1 >  &qtb, | 
|  | Scalar delta, | 
|  | Scalar &par, | 
|  | Matrix< Scalar, Dynamic, 1 >  &x) | 
|  | { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | typedef DenseIndex Index; | 
|  |  | 
|  | /* Local variables */ | 
|  | Index i, j, l; | 
|  | Scalar fp; | 
|  | Scalar parc, parl; | 
|  | Index iter; | 
|  | Scalar temp, paru; | 
|  | Scalar gnorm; | 
|  | Scalar dxnorm; | 
|  |  | 
|  |  | 
|  | /* Function Body */ | 
|  | const Scalar dwarf = (std::numeric_limits<Scalar>::min)(); | 
|  | const Index n = r.cols(); | 
|  | eigen_assert(n==diag.size()); | 
|  | eigen_assert(n==qtb.size()); | 
|  | eigen_assert(n==x.size()); | 
|  |  | 
|  | Matrix< Scalar, Dynamic, 1 >  wa1, wa2; | 
|  |  | 
|  | /* compute and store in x the gauss-newton direction. if the */ | 
|  | /* jacobian is rank-deficient, obtain a least squares solution. */ | 
|  | Index nsing = n-1; | 
|  | wa1 = qtb; | 
|  | for (j = 0; j < n; ++j) { | 
|  | if (r(j,j) == 0. && nsing == n-1) | 
|  | nsing = j - 1; | 
|  | if (nsing < n-1) | 
|  | wa1[j] = 0.; | 
|  | } | 
|  | for (j = nsing; j>=0; --j) { | 
|  | wa1[j] /= r(j,j); | 
|  | temp = wa1[j]; | 
|  | for (i = 0; i < j ; ++i) | 
|  | wa1[i] -= r(i,j) * temp; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < n; ++j) | 
|  | x[ipvt[j]] = wa1[j]; | 
|  |  | 
|  | /* initialize the iteration counter. */ | 
|  | /* evaluate the function at the origin, and test */ | 
|  | /* for acceptance of the gauss-newton direction. */ | 
|  | iter = 0; | 
|  | wa2 = diag.cwiseProduct(x); | 
|  | dxnorm = wa2.blueNorm(); | 
|  | fp = dxnorm - delta; | 
|  | if (fp <= Scalar(0.1) * delta) { | 
|  | par = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* if the jacobian is not rank deficient, the newton */ | 
|  | /* step provides a lower bound, parl, for the zero of */ | 
|  | /* the function. otherwise set this bound to zero. */ | 
|  | parl = 0.; | 
|  | if (nsing >= n-1) { | 
|  | for (j = 0; j < n; ++j) { | 
|  | l = ipvt[j]; | 
|  | wa1[j] = diag[l] * (wa2[l] / dxnorm); | 
|  | } | 
|  | // it's actually a triangularView.solveInplace(), though in a weird | 
|  | // way: | 
|  | for (j = 0; j < n; ++j) { | 
|  | Scalar sum = 0.; | 
|  | for (i = 0; i < j; ++i) | 
|  | sum += r(i,j) * wa1[i]; | 
|  | wa1[j] = (wa1[j] - sum) / r(j,j); | 
|  | } | 
|  | temp = wa1.blueNorm(); | 
|  | parl = fp / delta / temp / temp; | 
|  | } | 
|  |  | 
|  | /* calculate an upper bound, paru, for the zero of the function. */ | 
|  | for (j = 0; j < n; ++j) | 
|  | wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]]; | 
|  |  | 
|  | gnorm = wa1.stableNorm(); | 
|  | paru = gnorm / delta; | 
|  | if (paru == 0.) | 
|  | paru = dwarf / (std::min)(delta,Scalar(0.1)); | 
|  |  | 
|  | /* if the input par lies outside of the interval (parl,paru), */ | 
|  | /* set par to the closer endpoint. */ | 
|  | par = (std::max)(par,parl); | 
|  | par = (std::min)(par,paru); | 
|  | if (par == 0.) | 
|  | par = gnorm / dxnorm; | 
|  |  | 
|  | /* beginning of an iteration. */ | 
|  | while (true) { | 
|  | ++iter; | 
|  |  | 
|  | /* evaluate the function at the current value of par. */ | 
|  | if (par == 0.) | 
|  | par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */ | 
|  | wa1 = sqrt(par)* diag; | 
|  |  | 
|  | Matrix< Scalar, Dynamic, 1 > sdiag(n); | 
|  | qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag); | 
|  |  | 
|  | wa2 = diag.cwiseProduct(x); | 
|  | dxnorm = wa2.blueNorm(); | 
|  | temp = fp; | 
|  | fp = dxnorm - delta; | 
|  |  | 
|  | /* if the function is small enough, accept the current value */ | 
|  | /* of par. also test for the exceptional cases where parl */ | 
|  | /* is zero or the number of iterations has reached 10. */ | 
|  | if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) | 
|  | break; | 
|  |  | 
|  | /* compute the newton correction. */ | 
|  | for (j = 0; j < n; ++j) { | 
|  | l = ipvt[j]; | 
|  | wa1[j] = diag[l] * (wa2[l] / dxnorm); | 
|  | } | 
|  | for (j = 0; j < n; ++j) { | 
|  | wa1[j] /= sdiag[j]; | 
|  | temp = wa1[j]; | 
|  | for (i = j+1; i < n; ++i) | 
|  | wa1[i] -= r(i,j) * temp; | 
|  | } | 
|  | temp = wa1.blueNorm(); | 
|  | parc = fp / delta / temp / temp; | 
|  |  | 
|  | /* depending on the sign of the function, update parl or paru. */ | 
|  | if (fp > 0.) | 
|  | parl = (std::max)(parl,par); | 
|  | if (fp < 0.) | 
|  | paru = (std::min)(paru,par); | 
|  |  | 
|  | /* compute an improved estimate for par. */ | 
|  | /* Computing MAX */ | 
|  | par = (std::max)(parl,par+parc); | 
|  |  | 
|  | /* end of an iteration. */ | 
|  | } | 
|  |  | 
|  | /* termination. */ | 
|  | if (iter == 0) | 
|  | par = 0.; | 
|  | return; | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void lmpar2( | 
|  | const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr, | 
|  | const Matrix< Scalar, Dynamic, 1 >  &diag, | 
|  | const Matrix< Scalar, Dynamic, 1 >  &qtb, | 
|  | Scalar delta, | 
|  | Scalar &par, | 
|  | Matrix< Scalar, Dynamic, 1 >  &x) | 
|  |  | 
|  | { | 
|  | using std::sqrt; | 
|  | using std::abs; | 
|  | typedef DenseIndex Index; | 
|  |  | 
|  | /* Local variables */ | 
|  | Index j; | 
|  | Scalar fp; | 
|  | Scalar parc, parl; | 
|  | Index iter; | 
|  | Scalar temp, paru; | 
|  | Scalar gnorm; | 
|  | Scalar dxnorm; | 
|  |  | 
|  |  | 
|  | /* Function Body */ | 
|  | const Scalar dwarf = (std::numeric_limits<Scalar>::min)(); | 
|  | const Index n = qr.matrixQR().cols(); | 
|  | eigen_assert(n==diag.size()); | 
|  | eigen_assert(n==qtb.size()); | 
|  |  | 
|  | Matrix< Scalar, Dynamic, 1 >  wa1, wa2; | 
|  |  | 
|  | /* compute and store in x the gauss-newton direction. if the */ | 
|  | /* jacobian is rank-deficient, obtain a least squares solution. */ | 
|  |  | 
|  | //    const Index rank = qr.nonzeroPivots(); // exactly double(0.) | 
|  | const Index rank = qr.rank(); // use a threshold | 
|  | wa1 = qtb; | 
|  | wa1.tail(n-rank).setZero(); | 
|  | qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank)); | 
|  |  | 
|  | x = qr.colsPermutation()*wa1; | 
|  |  | 
|  | /* initialize the iteration counter. */ | 
|  | /* evaluate the function at the origin, and test */ | 
|  | /* for acceptance of the gauss-newton direction. */ | 
|  | iter = 0; | 
|  | wa2 = diag.cwiseProduct(x); | 
|  | dxnorm = wa2.blueNorm(); | 
|  | fp = dxnorm - delta; | 
|  | if (fp <= Scalar(0.1) * delta) { | 
|  | par = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* if the jacobian is not rank deficient, the newton */ | 
|  | /* step provides a lower bound, parl, for the zero of */ | 
|  | /* the function. otherwise set this bound to zero. */ | 
|  | parl = 0.; | 
|  | if (rank==n) { | 
|  | wa1 = qr.colsPermutation().inverse() *  diag.cwiseProduct(wa2)/dxnorm; | 
|  | qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1); | 
|  | temp = wa1.blueNorm(); | 
|  | parl = fp / delta / temp / temp; | 
|  | } | 
|  |  | 
|  | /* calculate an upper bound, paru, for the zero of the function. */ | 
|  | for (j = 0; j < n; ++j) | 
|  | wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)]; | 
|  |  | 
|  | gnorm = wa1.stableNorm(); | 
|  | paru = gnorm / delta; | 
|  | if (paru == 0.) | 
|  | paru = dwarf / (std::min)(delta,Scalar(0.1)); | 
|  |  | 
|  | /* if the input par lies outside of the interval (parl,paru), */ | 
|  | /* set par to the closer endpoint. */ | 
|  | par = (std::max)(par,parl); | 
|  | par = (std::min)(par,paru); | 
|  | if (par == 0.) | 
|  | par = gnorm / dxnorm; | 
|  |  | 
|  | /* beginning of an iteration. */ | 
|  | Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR(); | 
|  | while (true) { | 
|  | ++iter; | 
|  |  | 
|  | /* evaluate the function at the current value of par. */ | 
|  | if (par == 0.) | 
|  | par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */ | 
|  | wa1 = sqrt(par)* diag; | 
|  |  | 
|  | Matrix< Scalar, Dynamic, 1 > sdiag(n); | 
|  | qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag); | 
|  |  | 
|  | wa2 = diag.cwiseProduct(x); | 
|  | dxnorm = wa2.blueNorm(); | 
|  | temp = fp; | 
|  | fp = dxnorm - delta; | 
|  |  | 
|  | /* if the function is small enough, accept the current value */ | 
|  | /* of par. also test for the exceptional cases where parl */ | 
|  | /* is zero or the number of iterations has reached 10. */ | 
|  | if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) | 
|  | break; | 
|  |  | 
|  | /* compute the newton correction. */ | 
|  | wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm); | 
|  | // we could almost use this here, but the diagonal is outside qr, in sdiag[] | 
|  | // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1); | 
|  | for (j = 0; j < n; ++j) { | 
|  | wa1[j] /= sdiag[j]; | 
|  | temp = wa1[j]; | 
|  | for (Index i = j+1; i < n; ++i) | 
|  | wa1[i] -= s(i,j) * temp; | 
|  | } | 
|  | temp = wa1.blueNorm(); | 
|  | parc = fp / delta / temp / temp; | 
|  |  | 
|  | /* depending on the sign of the function, update parl or paru. */ | 
|  | if (fp > 0.) | 
|  | parl = (std::max)(parl,par); | 
|  | if (fp < 0.) | 
|  | paru = (std::min)(paru,par); | 
|  |  | 
|  | /* compute an improved estimate for par. */ | 
|  | par = (std::max)(parl,par+parc); | 
|  | } | 
|  | if (iter == 0) | 
|  | par = 0.; | 
|  | return; | 
|  | } | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen |