|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::DefaultDevice; | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | typedef Tensor<float, 1>::DimensionPair DimPair; | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_evals() | 
|  | { | 
|  | Tensor<float, 2, DataLayout> mat1(2, 3); | 
|  | Tensor<float, 2, DataLayout> mat2(2, 3); | 
|  | Tensor<float, 2, DataLayout> mat3(3, 2); | 
|  |  | 
|  | mat1.setRandom(); | 
|  | mat2.setRandom(); | 
|  | mat3.setRandom(); | 
|  |  | 
|  | Tensor<float, 2, DataLayout> mat4(3,3); | 
|  | mat4.setZero(); | 
|  | Eigen::array<DimPair, 1> dims3 = {{DimPair(0, 0)}}; | 
|  | typedef TensorEvaluator<decltype(mat1.contract(mat2, dims3)), DefaultDevice> Evaluator; | 
|  | Evaluator eval(mat1.contract(mat2, dims3), DefaultDevice()); | 
|  | eval.evalTo(mat4.data()); | 
|  | EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); | 
|  | VERIFY_IS_EQUAL(eval.dimensions()[0], 3); | 
|  | VERIFY_IS_EQUAL(eval.dimensions()[1], 3); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat4(0,0), mat1(0,0)*mat2(0,0) + mat1(1,0)*mat2(1,0)); | 
|  | VERIFY_IS_APPROX(mat4(0,1), mat1(0,0)*mat2(0,1) + mat1(1,0)*mat2(1,1)); | 
|  | VERIFY_IS_APPROX(mat4(0,2), mat1(0,0)*mat2(0,2) + mat1(1,0)*mat2(1,2)); | 
|  | VERIFY_IS_APPROX(mat4(1,0), mat1(0,1)*mat2(0,0) + mat1(1,1)*mat2(1,0)); | 
|  | VERIFY_IS_APPROX(mat4(1,1), mat1(0,1)*mat2(0,1) + mat1(1,1)*mat2(1,1)); | 
|  | VERIFY_IS_APPROX(mat4(1,2), mat1(0,1)*mat2(0,2) + mat1(1,1)*mat2(1,2)); | 
|  | VERIFY_IS_APPROX(mat4(2,0), mat1(0,2)*mat2(0,0) + mat1(1,2)*mat2(1,0)); | 
|  | VERIFY_IS_APPROX(mat4(2,1), mat1(0,2)*mat2(0,1) + mat1(1,2)*mat2(1,1)); | 
|  | VERIFY_IS_APPROX(mat4(2,2), mat1(0,2)*mat2(0,2) + mat1(1,2)*mat2(1,2)); | 
|  |  | 
|  | Tensor<float, 2, DataLayout> mat5(2,2); | 
|  | mat5.setZero(); | 
|  | Eigen::array<DimPair, 1> dims4 = {{DimPair(1, 1)}}; | 
|  | typedef TensorEvaluator<decltype(mat1.contract(mat2, dims4)), DefaultDevice> Evaluator2; | 
|  | Evaluator2 eval2(mat1.contract(mat2, dims4), DefaultDevice()); | 
|  | eval2.evalTo(mat5.data()); | 
|  | EIGEN_STATIC_ASSERT(Evaluator2::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); | 
|  | VERIFY_IS_EQUAL(eval2.dimensions()[0], 2); | 
|  | VERIFY_IS_EQUAL(eval2.dimensions()[1], 2); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat5(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(0,1) + mat1(0,2)*mat2(0,2)); | 
|  | VERIFY_IS_APPROX(mat5(0,1), mat1(0,0)*mat2(1,0) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(1,2)); | 
|  | VERIFY_IS_APPROX(mat5(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(0,1) + mat1(1,2)*mat2(0,2)); | 
|  | VERIFY_IS_APPROX(mat5(1,1), mat1(1,0)*mat2(1,0) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(1,2)); | 
|  |  | 
|  | Tensor<float, 2, DataLayout> mat6(2,2); | 
|  | mat6.setZero(); | 
|  | Eigen::array<DimPair, 1> dims6 = {{DimPair(1, 0)}}; | 
|  | typedef TensorEvaluator<decltype(mat1.contract(mat3, dims6)), DefaultDevice> Evaluator3; | 
|  | Evaluator3 eval3(mat1.contract(mat3, dims6), DefaultDevice()); | 
|  | eval3.evalTo(mat6.data()); | 
|  | EIGEN_STATIC_ASSERT(Evaluator3::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); | 
|  | VERIFY_IS_EQUAL(eval3.dimensions()[0], 2); | 
|  | VERIFY_IS_EQUAL(eval3.dimensions()[1], 2); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat6(0,0), mat1(0,0)*mat3(0,0) + mat1(0,1)*mat3(1,0) + mat1(0,2)*mat3(2,0)); | 
|  | VERIFY_IS_APPROX(mat6(0,1), mat1(0,0)*mat3(0,1) + mat1(0,1)*mat3(1,1) + mat1(0,2)*mat3(2,1)); | 
|  | VERIFY_IS_APPROX(mat6(1,0), mat1(1,0)*mat3(0,0) + mat1(1,1)*mat3(1,0) + mat1(1,2)*mat3(2,0)); | 
|  | VERIFY_IS_APPROX(mat6(1,1), mat1(1,0)*mat3(0,1) + mat1(1,1)*mat3(1,1) + mat1(1,2)*mat3(2,1)); | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_scalar() | 
|  | { | 
|  | Tensor<float, 1, DataLayout> vec1({6}); | 
|  | Tensor<float, 1, DataLayout> vec2({6}); | 
|  |  | 
|  | vec1.setRandom(); | 
|  | vec2.setRandom(); | 
|  |  | 
|  | Eigen::array<DimPair, 1> dims = {{DimPair(0, 0)}}; | 
|  | Tensor<float, 0, DataLayout> scalar = vec1.contract(vec2, dims); | 
|  |  | 
|  | float expected = 0.0f; | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | expected += vec1(i) * vec2(i); | 
|  | } | 
|  | VERIFY_IS_APPROX(scalar(), expected); | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_multidims() | 
|  | { | 
|  | Tensor<float, 3, DataLayout> mat1(2, 2, 2); | 
|  | Tensor<float, 4, DataLayout> mat2(2, 2, 2, 2); | 
|  |  | 
|  | mat1.setRandom(); | 
|  | mat2.setRandom(); | 
|  |  | 
|  | Tensor<float, 3, DataLayout> mat3(2, 2, 2); | 
|  | mat3.setZero(); | 
|  | Eigen::array<DimPair, 2> dims = {{DimPair(1, 2), DimPair(2, 3)}}; | 
|  | typedef TensorEvaluator<decltype(mat1.contract(mat2, dims)), DefaultDevice> Evaluator; | 
|  | Evaluator eval(mat1.contract(mat2, dims), DefaultDevice()); | 
|  | eval.evalTo(mat3.data()); | 
|  | EIGEN_STATIC_ASSERT(Evaluator::NumDims==3ul, YOU_MADE_A_PROGRAMMING_MISTAKE); | 
|  | VERIFY_IS_EQUAL(eval.dimensions()[0], 2); | 
|  | VERIFY_IS_EQUAL(eval.dimensions()[1], 2); | 
|  | VERIFY_IS_EQUAL(eval.dimensions()[2], 2); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat3(0,0,0), mat1(0,0,0)*mat2(0,0,0,0) + mat1(0,1,0)*mat2(0,0,1,0) + | 
|  | mat1(0,0,1)*mat2(0,0,0,1) + mat1(0,1,1)*mat2(0,0,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(0,0,1), mat1(0,0,0)*mat2(0,1,0,0) + mat1(0,1,0)*mat2(0,1,1,0) + | 
|  | mat1(0,0,1)*mat2(0,1,0,1) + mat1(0,1,1)*mat2(0,1,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(0,1,0), mat1(0,0,0)*mat2(1,0,0,0) + mat1(0,1,0)*mat2(1,0,1,0) + | 
|  | mat1(0,0,1)*mat2(1,0,0,1) + mat1(0,1,1)*mat2(1,0,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(0,1,1), mat1(0,0,0)*mat2(1,1,0,0) + mat1(0,1,0)*mat2(1,1,1,0) + | 
|  | mat1(0,0,1)*mat2(1,1,0,1) + mat1(0,1,1)*mat2(1,1,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(1,0,0), mat1(1,0,0)*mat2(0,0,0,0) + mat1(1,1,0)*mat2(0,0,1,0) + | 
|  | mat1(1,0,1)*mat2(0,0,0,1) + mat1(1,1,1)*mat2(0,0,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(1,0,1), mat1(1,0,0)*mat2(0,1,0,0) + mat1(1,1,0)*mat2(0,1,1,0) + | 
|  | mat1(1,0,1)*mat2(0,1,0,1) + mat1(1,1,1)*mat2(0,1,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(1,1,0), mat1(1,0,0)*mat2(1,0,0,0) + mat1(1,1,0)*mat2(1,0,1,0) + | 
|  | mat1(1,0,1)*mat2(1,0,0,1) + mat1(1,1,1)*mat2(1,0,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(1,1,1), mat1(1,0,0)*mat2(1,1,0,0) + mat1(1,1,0)*mat2(1,1,1,0) + | 
|  | mat1(1,0,1)*mat2(1,1,0,1) + mat1(1,1,1)*mat2(1,1,1,1)); | 
|  |  | 
|  | Tensor<float, 2, DataLayout> mat4(2, 2); | 
|  | Tensor<float, 3, DataLayout> mat5(2, 2, 2); | 
|  |  | 
|  | mat4.setRandom(); | 
|  | mat5.setRandom(); | 
|  |  | 
|  | Tensor<float, 1, DataLayout> mat6(2); | 
|  | mat6.setZero(); | 
|  | Eigen::array<DimPair, 2> dims2({{DimPair(0, 1), DimPair(1, 0)}}); | 
|  | typedef TensorEvaluator<decltype(mat4.contract(mat5, dims2)), DefaultDevice> Evaluator2; | 
|  | Evaluator2 eval2(mat4.contract(mat5, dims2), DefaultDevice()); | 
|  | eval2.evalTo(mat6.data()); | 
|  | EIGEN_STATIC_ASSERT(Evaluator2::NumDims==1ul, YOU_MADE_A_PROGRAMMING_MISTAKE); | 
|  | VERIFY_IS_EQUAL(eval2.dimensions()[0], 2); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat6(0), mat4(0,0)*mat5(0,0,0) + mat4(1,0)*mat5(0,1,0) + | 
|  | mat4(0,1)*mat5(1,0,0) + mat4(1,1)*mat5(1,1,0)); | 
|  | VERIFY_IS_APPROX(mat6(1), mat4(0,0)*mat5(0,0,1) + mat4(1,0)*mat5(0,1,1) + | 
|  | mat4(0,1)*mat5(1,0,1) + mat4(1,1)*mat5(1,1,1)); | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_holes() { | 
|  | Tensor<float, 4, DataLayout> t1(2, 5, 7, 3); | 
|  | Tensor<float, 5, DataLayout> t2(2, 7, 11, 13, 3); | 
|  | t1.setRandom(); | 
|  | t2.setRandom(); | 
|  |  | 
|  | Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(3, 4)}}; | 
|  | Tensor<float, 5, DataLayout> result = t1.contract(t2, dims); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 5); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 7); | 
|  | VERIFY_IS_EQUAL(result.dimension(2), 7); | 
|  | VERIFY_IS_EQUAL(result.dimension(3), 11); | 
|  | VERIFY_IS_EQUAL(result.dimension(4), 13); | 
|  |  | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 5; ++l) { | 
|  | for (int m = 0; m < 5; ++m) { | 
|  | VERIFY_IS_APPROX(result(i, j, k, l, m), | 
|  | t1(0, i, j, 0) * t2(0, k, l, m, 0) + | 
|  | t1(1, i, j, 0) * t2(1, k, l, m, 0) + | 
|  | t1(0, i, j, 1) * t2(0, k, l, m, 1) + | 
|  | t1(1, i, j, 1) * t2(1, k, l, m, 1) + | 
|  | t1(0, i, j, 2) * t2(0, k, l, m, 2) + | 
|  | t1(1, i, j, 2) * t2(1, k, l, m, 2)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_full_redux() | 
|  | { | 
|  | Tensor<float, 2, DataLayout> t1(2, 2); | 
|  | Tensor<float, 3, DataLayout> t2(2, 2, 2); | 
|  | t1.setRandom(); | 
|  | t2.setRandom(); | 
|  |  | 
|  | Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(1, 1)}}; | 
|  | Tensor<float, 1, DataLayout> result = t1.contract(t2, dims); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_APPROX(result(0), t1(0, 0) * t2(0, 0, 0) +  t1(1, 0) * t2(1, 0, 0) | 
|  | + t1(0, 1) * t2(0, 1, 0) +  t1(1, 1) * t2(1, 1, 0)); | 
|  | VERIFY_IS_APPROX(result(1), t1(0, 0) * t2(0, 0, 1) +  t1(1, 0) * t2(1, 0, 1) | 
|  | + t1(0, 1) * t2(0, 1, 1) +  t1(1, 1) * t2(1, 1, 1)); | 
|  |  | 
|  | dims[0] = DimPair(1, 0); | 
|  | dims[1] = DimPair(2, 1); | 
|  | result = t2.contract(t1, dims); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_APPROX(result(0), t1(0, 0) * t2(0, 0, 0) +  t1(1, 0) * t2(0, 1, 0) | 
|  | + t1(0, 1) * t2(0, 0, 1) +  t1(1, 1) * t2(0, 1, 1)); | 
|  | VERIFY_IS_APPROX(result(1), t1(0, 0) * t2(1, 0, 0) +  t1(1, 0) * t2(1, 1, 0) | 
|  | + t1(0, 1) * t2(1, 0, 1) +  t1(1, 1) * t2(1, 1, 1)); | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_contraction_of_contraction() | 
|  | { | 
|  | Tensor<float, 2, DataLayout> t1(2, 2); | 
|  | Tensor<float, 2, DataLayout> t2(2, 2); | 
|  | Tensor<float, 2, DataLayout> t3(2, 2); | 
|  | Tensor<float, 2, DataLayout> t4(2, 2); | 
|  | t1.setRandom(); | 
|  | t2.setRandom(); | 
|  | t3.setRandom(); | 
|  | t4.setRandom(); | 
|  |  | 
|  | Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; | 
|  | auto contract1 = t1.contract(t2, dims); | 
|  | auto diff = t3 - contract1; | 
|  | auto contract2 = t1.contract(t4, dims); | 
|  | Tensor<float, 2, DataLayout> result = contract2.contract(diff, dims); | 
|  |  | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 2); | 
|  |  | 
|  | Eigen::Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> | 
|  | m1(t1.data(), 2, 2), m2(t2.data(), 2, 2), m3(t3.data(), 2, 2), | 
|  | m4(t4.data(), 2, 2); | 
|  | Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> | 
|  | expected = (m1 * m4) * (m3 - m1 * m2); | 
|  |  | 
|  | VERIFY_IS_APPROX(result(0, 0), expected(0, 0)); | 
|  | VERIFY_IS_APPROX(result(0, 1), expected(0, 1)); | 
|  | VERIFY_IS_APPROX(result(1, 0), expected(1, 0)); | 
|  | VERIFY_IS_APPROX(result(1, 1), expected(1, 1)); | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_expr() | 
|  | { | 
|  | Tensor<float, 2, DataLayout> mat1(2, 3); | 
|  | Tensor<float, 2, DataLayout> mat2(3, 2); | 
|  | mat1.setRandom(); | 
|  | mat2.setRandom(); | 
|  |  | 
|  | Tensor<float, 2, DataLayout> mat3(2,2); | 
|  |  | 
|  | Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; | 
|  | mat3 = mat1.contract(mat2, dims); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat3(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(1,0) + mat1(0,2)*mat2(2,0)); | 
|  | VERIFY_IS_APPROX(mat3(0,1), mat1(0,0)*mat2(0,1) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(2,1)); | 
|  | VERIFY_IS_APPROX(mat3(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(1,0) + mat1(1,2)*mat2(2,0)); | 
|  | VERIFY_IS_APPROX(mat3(1,1), mat1(1,0)*mat2(0,1) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(2,1)); | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_out_of_order_contraction() | 
|  | { | 
|  | Tensor<float, 3, DataLayout> mat1(2, 2, 2); | 
|  | Tensor<float, 3, DataLayout> mat2(2, 2, 2); | 
|  |  | 
|  | mat1.setRandom(); | 
|  | mat2.setRandom(); | 
|  |  | 
|  | Tensor<float, 2, DataLayout> mat3(2, 2); | 
|  |  | 
|  | Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(0, 2)}}; | 
|  | mat3 = mat1.contract(mat2, dims); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat3(0, 0), | 
|  | mat1(0,0,0)*mat2(0,0,0) + mat1(1,0,0)*mat2(0,0,1) + | 
|  | mat1(0,0,1)*mat2(1,0,0) + mat1(1,0,1)*mat2(1,0,1)); | 
|  | VERIFY_IS_APPROX(mat3(1, 0), | 
|  | mat1(0,1,0)*mat2(0,0,0) + mat1(1,1,0)*mat2(0,0,1) + | 
|  | mat1(0,1,1)*mat2(1,0,0) + mat1(1,1,1)*mat2(1,0,1)); | 
|  | VERIFY_IS_APPROX(mat3(0, 1), | 
|  | mat1(0,0,0)*mat2(0,1,0) + mat1(1,0,0)*mat2(0,1,1) + | 
|  | mat1(0,0,1)*mat2(1,1,0) + mat1(1,0,1)*mat2(1,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(1, 1), | 
|  | mat1(0,1,0)*mat2(0,1,0) + mat1(1,1,0)*mat2(0,1,1) + | 
|  | mat1(0,1,1)*mat2(1,1,0) + mat1(1,1,1)*mat2(1,1,1)); | 
|  |  | 
|  | Eigen::array<DimPair, 2> dims2 = {{DimPair(0, 2), DimPair(2, 0)}}; | 
|  | mat3 = mat1.contract(mat2, dims2); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat3(0, 0), | 
|  | mat1(0,0,0)*mat2(0,0,0) + mat1(1,0,0)*mat2(0,0,1) + | 
|  | mat1(0,0,1)*mat2(1,0,0) + mat1(1,0,1)*mat2(1,0,1)); | 
|  | VERIFY_IS_APPROX(mat3(1, 0), | 
|  | mat1(0,1,0)*mat2(0,0,0) + mat1(1,1,0)*mat2(0,0,1) + | 
|  | mat1(0,1,1)*mat2(1,0,0) + mat1(1,1,1)*mat2(1,0,1)); | 
|  | VERIFY_IS_APPROX(mat3(0, 1), | 
|  | mat1(0,0,0)*mat2(0,1,0) + mat1(1,0,0)*mat2(0,1,1) + | 
|  | mat1(0,0,1)*mat2(1,1,0) + mat1(1,0,1)*mat2(1,1,1)); | 
|  | VERIFY_IS_APPROX(mat3(1, 1), | 
|  | mat1(0,1,0)*mat2(0,1,0) + mat1(1,1,0)*mat2(0,1,1) + | 
|  | mat1(0,1,1)*mat2(1,1,0) + mat1(1,1,1)*mat2(1,1,1)); | 
|  |  | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_consistency() | 
|  | { | 
|  | // this does something like testing (A*B)^T = (B^T * A^T) | 
|  |  | 
|  | Tensor<float, 3, DataLayout> mat1(4, 3, 5); | 
|  | Tensor<float, 5, DataLayout> mat2(3, 2, 1, 5, 4); | 
|  | mat1.setRandom(); | 
|  | mat2.setRandom(); | 
|  |  | 
|  | Tensor<float, 4, DataLayout> mat3(5, 2, 1, 5); | 
|  | Tensor<float, 4, DataLayout> mat4(2, 1, 5, 5); | 
|  |  | 
|  | // contract on dimensions of size 4 and 3 | 
|  | Eigen::array<DimPair, 2> dims1 = {{DimPair(0, 4), DimPair(1, 0)}}; | 
|  | Eigen::array<DimPair, 2> dims2 = {{DimPair(4, 0), DimPair(0, 1)}}; | 
|  |  | 
|  | mat3 = mat1.contract(mat2, dims1); | 
|  | mat4 = mat2.contract(mat1, dims2); | 
|  |  | 
|  | // check that these are equal except for ordering of dimensions | 
|  | if (DataLayout == ColMajor) { | 
|  | for (size_t i = 0; i < 5; i++) { | 
|  | for (size_t j = 0; j < 10; j++) { | 
|  | VERIFY_IS_APPROX(mat3.data()[i + 5 * j], mat4.data()[j + 10 * i]); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Row major | 
|  | for (size_t i = 0; i < 5; i++) { | 
|  | for (size_t j = 0; j < 10; j++) { | 
|  | VERIFY_IS_APPROX(mat3.data()[10 * i + j], mat4.data()[i + 5 * j]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_large_contraction() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31); | 
|  | Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10); | 
|  | Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10); | 
|  |  | 
|  | t_left.setRandom(); | 
|  | t_right.setRandom(); | 
|  |  | 
|  | // Add a little offset so that the results won't be close to zero. | 
|  | t_left += t_left.constant(1.0f); | 
|  | t_right += t_right.constant(1.0f); | 
|  |  | 
|  | typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; | 
|  | MapXf m_left(t_left.data(), 1500, 248); | 
|  | MapXf m_right(t_right.data(), 248, 1400); | 
|  | Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400); | 
|  |  | 
|  | // this contraction should be equivalent to a single matrix multiplication | 
|  | Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(3, 1)}}; | 
|  |  | 
|  | // compute results by separate methods | 
|  | t_result = t_left.contract(t_right, dims); | 
|  | m_result = m_left * m_right; | 
|  |  | 
|  | for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { | 
|  | VERIFY(&t_result.data()[i] != &m_result.data()[i]); | 
|  | VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_matrix_vector() | 
|  | { | 
|  | Tensor<float, 2, DataLayout> t_left(30, 50); | 
|  | Tensor<float, 1, DataLayout> t_right(50); | 
|  | Tensor<float, 1, DataLayout> t_result(30); | 
|  |  | 
|  | t_left.setRandom(); | 
|  | t_right.setRandom(); | 
|  |  | 
|  | typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; | 
|  | MapXf m_left(t_left.data(), 30, 50); | 
|  | MapXf m_right(t_right.data(), 50, 1); | 
|  | Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(30, 1); | 
|  |  | 
|  | // this contraction should be equivalent to a single matrix multiplication | 
|  | Eigen::array<DimPair, 1> dims{{DimPair(1, 0)}}; | 
|  |  | 
|  | // compute results by separate methods | 
|  | t_result = t_left.contract(t_right, dims); | 
|  | m_result = m_left * m_right; | 
|  |  | 
|  | for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { | 
|  | VERIFY(internal::isApprox(t_result(i), m_result(i, 0), 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_tensor_vector() | 
|  | { | 
|  | Tensor<float, 3, DataLayout> t_left(7, 13, 17); | 
|  | Tensor<float, 2, DataLayout> t_right(1, 7); | 
|  |  | 
|  | t_left.setRandom(); | 
|  | t_right.setRandom(); | 
|  |  | 
|  | typedef typename Tensor<float, 1, DataLayout>::DimensionPair DimensionPair; | 
|  | Eigen::array<DimensionPair, 1> dim_pair01{{{0, 1}}}; | 
|  | Tensor<float, 3, DataLayout> t_result = t_left.contract(t_right, dim_pair01); | 
|  |  | 
|  | typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; | 
|  | MapXf m_left(t_left.data(), 7, 13*17); | 
|  | MapXf m_right(t_right.data(), 1, 7); | 
|  | Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result = m_left.transpose() * m_right.transpose(); | 
|  |  | 
|  | for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { | 
|  | VERIFY(internal::isApprox(t_result(i), m_result(i, 0), 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_small_blocking_factors() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> t_left(30, 5, 3, 31); | 
|  | Tensor<float, 5, DataLayout> t_right(3, 31, 7, 20, 1); | 
|  | t_left.setRandom(); | 
|  | t_right.setRandom(); | 
|  |  | 
|  | // Add a little offset so that the results won't be close to zero. | 
|  | t_left += t_left.constant(1.0f); | 
|  | t_right += t_right.constant(1.0f); | 
|  |  | 
|  | // Force the cache sizes, which results in smaller blocking factors. | 
|  | Eigen::setCpuCacheSizes(896, 1920, 2944); | 
|  |  | 
|  | // this contraction should be equivalent to a single matrix multiplication | 
|  | Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(3, 1)}}; | 
|  | Tensor<float, 5, DataLayout> t_result; | 
|  | t_result = t_left.contract(t_right, dims); | 
|  |  | 
|  | // compute result using a simple eigen matrix product | 
|  | Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> m_left(t_left.data(), 150, 93); | 
|  | Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> m_right(t_right.data(), 93, 140); | 
|  | Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result = m_left * m_right; | 
|  |  | 
|  | for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { | 
|  | VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_tensor_product() | 
|  | { | 
|  | Tensor<float, 2, DataLayout> mat1(2, 3); | 
|  | Tensor<float, 2, DataLayout> mat2(4, 1); | 
|  | mat1.setRandom(); | 
|  | mat2.setRandom(); | 
|  |  | 
|  | Eigen::array<DimPair, 0> dims; | 
|  | Tensor<float, 4, DataLayout> result = mat1.contract(mat2, dims); | 
|  |  | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(result.dimension(2), 4); | 
|  | VERIFY_IS_EQUAL(result.dimension(3), 1); | 
|  | for (int i = 0; i < result.dimension(0); ++i) { | 
|  | for (int j = 0; j < result.dimension(1); ++j) { | 
|  | for (int k = 0; k < result.dimension(2); ++k) { | 
|  | for (int l = 0; l < result.dimension(3); ++l) { | 
|  | VERIFY_IS_APPROX(result(i, j, k, l), mat1(i, j) * mat2(k, l) ); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_const_inputs() | 
|  | { | 
|  | Tensor<float, 2, DataLayout> in1(2, 3); | 
|  | Tensor<float, 2, DataLayout> in2(3, 2); | 
|  | in1.setRandom(); | 
|  | in2.setRandom(); | 
|  |  | 
|  | TensorMap<Tensor<const float, 2, DataLayout> > mat1(in1.data(), 2, 3); | 
|  | TensorMap<Tensor<const float, 2, DataLayout> > mat2(in2.data(), 3, 2); | 
|  | Tensor<float, 2, DataLayout> mat3(2,2); | 
|  |  | 
|  | Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; | 
|  | mat3 = mat1.contract(mat2, dims); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat3(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(1,0) + mat1(0,2)*mat2(2,0)); | 
|  | VERIFY_IS_APPROX(mat3(0,1), mat1(0,0)*mat2(0,1) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(2,1)); | 
|  | VERIFY_IS_APPROX(mat3(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(1,0) + mat1(1,2)*mat2(2,0)); | 
|  | VERIFY_IS_APPROX(mat3(1,1), mat1(1,0)*mat2(0,1) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(2,1)); | 
|  | } | 
|  |  | 
|  | // Apply Sqrt to all output elements. | 
|  | struct SqrtOutputKernel { | 
|  | template <typename Index, typename Scalar> | 
|  | EIGEN_ALWAYS_INLINE void operator()( | 
|  | const internal::blas_data_mapper<Scalar, Index, ColMajor>& output_mapper, | 
|  | const TensorContractionParams&, Index, Index, Index num_rows, | 
|  | Index num_cols) const { | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | for (int j = 0; j < num_cols; ++j) { | 
|  | output_mapper(i, j) = std::sqrt(output_mapper(i, j)); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_large_contraction_with_output_kernel() { | 
|  | Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31); | 
|  | Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10); | 
|  | Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10); | 
|  |  | 
|  | t_left.setRandom(); | 
|  | t_right.setRandom(); | 
|  | // Put trash in mat4 to verify contraction clears output memory. | 
|  | t_result.setRandom(); | 
|  |  | 
|  | // Add a little offset so that the results won't be close to zero. | 
|  | t_left += t_left.constant(1.0f); | 
|  | t_right += t_right.constant(1.0f); | 
|  |  | 
|  | typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; | 
|  | MapXf m_left(t_left.data(), 1500, 248); | 
|  | MapXf m_right(t_right.data(), 248, 1400); | 
|  | Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400); | 
|  |  | 
|  | // this contraction should be equivalent to a single matrix multiplication | 
|  | Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}}); | 
|  |  | 
|  | // compute results by separate methods | 
|  | t_result = t_left.contract(t_right, dims, SqrtOutputKernel()); | 
|  |  | 
|  | m_result = m_left * m_right; | 
|  |  | 
|  | for (std::ptrdiff_t i = 0; i < t_result.dimensions().TotalSize(); i++) { | 
|  | VERIFY(&t_result.data()[i] != &m_result.data()[i]); | 
|  | VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_contraction) | 
|  | { | 
|  | CALL_SUBTEST_1(test_evals<ColMajor>()); | 
|  | CALL_SUBTEST_1(test_evals<RowMajor>()); | 
|  | CALL_SUBTEST_1(test_scalar<ColMajor>()); | 
|  | CALL_SUBTEST_1(test_scalar<RowMajor>()); | 
|  | CALL_SUBTEST_2(test_multidims<ColMajor>()); | 
|  | CALL_SUBTEST_2(test_multidims<RowMajor>()); | 
|  | CALL_SUBTEST_2(test_holes<ColMajor>()); | 
|  | CALL_SUBTEST_2(test_holes<RowMajor>()); | 
|  | CALL_SUBTEST_3(test_full_redux<ColMajor>()); | 
|  | CALL_SUBTEST_3(test_full_redux<RowMajor>()); | 
|  | CALL_SUBTEST_3(test_contraction_of_contraction<ColMajor>()); | 
|  | CALL_SUBTEST_3(test_contraction_of_contraction<RowMajor>()); | 
|  | CALL_SUBTEST_4(test_expr<ColMajor>()); | 
|  | CALL_SUBTEST_4(test_expr<RowMajor>()); | 
|  | CALL_SUBTEST_4(test_out_of_order_contraction<ColMajor>()); | 
|  | CALL_SUBTEST_4(test_out_of_order_contraction<RowMajor>()); | 
|  | CALL_SUBTEST_5(test_consistency<ColMajor>()); | 
|  | CALL_SUBTEST_5(test_consistency<RowMajor>()); | 
|  | CALL_SUBTEST_5(test_large_contraction<ColMajor>()); | 
|  | CALL_SUBTEST_5(test_large_contraction<RowMajor>()); | 
|  | CALL_SUBTEST_6(test_matrix_vector<ColMajor>()); | 
|  | CALL_SUBTEST_6(test_matrix_vector<RowMajor>()); | 
|  | CALL_SUBTEST_6(test_tensor_vector<ColMajor>()); | 
|  | CALL_SUBTEST_6(test_tensor_vector<RowMajor>()); | 
|  | CALL_SUBTEST_7(test_small_blocking_factors<ColMajor>()); | 
|  | CALL_SUBTEST_7(test_small_blocking_factors<RowMajor>()); | 
|  | CALL_SUBTEST_7(test_tensor_product<ColMajor>()); | 
|  | CALL_SUBTEST_7(test_tensor_product<RowMajor>()); | 
|  | CALL_SUBTEST_8(test_const_inputs<ColMajor>()); | 
|  | CALL_SUBTEST_8(test_const_inputs<RowMajor>()); | 
|  | CALL_SUBTEST_8(test_large_contraction_with_output_kernel<ColMajor>()); | 
|  | CALL_SUBTEST_8(test_large_contraction_with_output_kernel<RowMajor>()); | 
|  |  | 
|  | // Force CMake to split this test. | 
|  | // EIGEN_SUFFIXES;1;2;3;4;5;6;7;8 | 
|  |  | 
|  | } |