|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <limits> | 
|  | #include <numeric> | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_trivial_reductions() { | 
|  | { | 
|  | Tensor<float, 0, DataLayout> tensor; | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 0> reduction_axis; | 
|  |  | 
|  | Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); | 
|  | VERIFY_IS_EQUAL(result(), tensor()); | 
|  | } | 
|  |  | 
|  | { | 
|  | Tensor<float, 1, DataLayout> tensor(7); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 0> reduction_axis; | 
|  |  | 
|  | Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 7); | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | VERIFY_IS_EQUAL(result(i), tensor(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Tensor<float, 2, DataLayout> tensor(2, 3); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 0> reduction_axis; | 
|  |  | 
|  | Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 3); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | VERIFY_IS_EQUAL(result(i, j), tensor(i, j)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar,int DataLayout> | 
|  | static void test_simple_reductions() { | 
|  | Tensor<Scalar, 4, DataLayout> tensor(2, 3, 5, 7); | 
|  | tensor.setRandom(); | 
|  | // Add a little offset so that the product reductions won't be close to zero. | 
|  | tensor += tensor.constant(Scalar(0.5f)); | 
|  | array<ptrdiff_t, 2> reduction_axis2; | 
|  | reduction_axis2[0] = 1; | 
|  | reduction_axis2[1] = 3; | 
|  |  | 
|  | Tensor<Scalar, 2, DataLayout> result = tensor.sum(reduction_axis2); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 5); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | Scalar sum = Scalar(0.0f); | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | sum += tensor(i, k, j, l); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(result(i, j), sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Tensor<Scalar, 0, DataLayout> sum1 = tensor.sum(); | 
|  | VERIFY_IS_EQUAL(sum1.rank(), 0); | 
|  |  | 
|  | array<ptrdiff_t, 4> reduction_axis4; | 
|  | reduction_axis4[0] = 0; | 
|  | reduction_axis4[1] = 1; | 
|  | reduction_axis4[2] = 2; | 
|  | reduction_axis4[3] = 3; | 
|  | Tensor<Scalar, 0, DataLayout> sum2 = tensor.sum(reduction_axis4); | 
|  | VERIFY_IS_EQUAL(sum2.rank(), 0); | 
|  |  | 
|  | VERIFY_IS_APPROX(sum1(), sum2()); | 
|  | } | 
|  |  | 
|  | reduction_axis2[0] = 0; | 
|  | reduction_axis2[1] = 2; | 
|  | result = tensor.prod(reduction_axis2); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 3); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 7); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | Scalar prod = Scalar(1.0f); | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | for (int l = 0; l < 5; ++l) { | 
|  | prod *= tensor(k, i, l, j); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(result(i, j), prod); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Tensor<Scalar, 0, DataLayout> prod1 = tensor.prod(); | 
|  | VERIFY_IS_EQUAL(prod1.rank(), 0); | 
|  |  | 
|  | array<ptrdiff_t, 4> reduction_axis4; | 
|  | reduction_axis4[0] = 0; | 
|  | reduction_axis4[1] = 1; | 
|  | reduction_axis4[2] = 2; | 
|  | reduction_axis4[3] = 3; | 
|  | Tensor<Scalar, 0, DataLayout> prod2 = tensor.prod(reduction_axis4); | 
|  | VERIFY_IS_EQUAL(prod2.rank(), 0); | 
|  |  | 
|  | VERIFY_IS_APPROX(prod1(), prod2()); | 
|  | } | 
|  |  | 
|  | reduction_axis2[0] = 0; | 
|  | reduction_axis2[1] = 2; | 
|  | result = tensor.maximum(reduction_axis2); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 3); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 7); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | Scalar max_val = std::numeric_limits<Scalar>::lowest(); | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | for (int l = 0; l < 5; ++l) { | 
|  | max_val = (std::max)(max_val, tensor(k, i, l, j)); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(result(i, j), max_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Tensor<Scalar, 0, DataLayout> max1 = tensor.maximum(); | 
|  | VERIFY_IS_EQUAL(max1.rank(), 0); | 
|  |  | 
|  | array<ptrdiff_t, 4> reduction_axis4; | 
|  | reduction_axis4[0] = 0; | 
|  | reduction_axis4[1] = 1; | 
|  | reduction_axis4[2] = 2; | 
|  | reduction_axis4[3] = 3; | 
|  | Tensor<Scalar, 0, DataLayout> max2 = tensor.maximum(reduction_axis4); | 
|  | VERIFY_IS_EQUAL(max2.rank(), 0); | 
|  |  | 
|  | VERIFY_IS_APPROX(max1(), max2()); | 
|  | } | 
|  |  | 
|  | reduction_axis2[0] = 0; | 
|  | reduction_axis2[1] = 1; | 
|  | result = tensor.minimum(reduction_axis2); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 5); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 7); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | Scalar min_val = (std::numeric_limits<Scalar>::max)(); | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | for (int l = 0; l < 3; ++l) { | 
|  | min_val = (std::min)(min_val, tensor(k, l, i, j)); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(result(i, j), min_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Tensor<Scalar, 0, DataLayout> min1 = tensor.minimum(); | 
|  | VERIFY_IS_EQUAL(min1.rank(), 0); | 
|  |  | 
|  | array<ptrdiff_t, 4> reduction_axis4; | 
|  | reduction_axis4[0] = 0; | 
|  | reduction_axis4[1] = 1; | 
|  | reduction_axis4[2] = 2; | 
|  | reduction_axis4[3] = 3; | 
|  | Tensor<Scalar, 0, DataLayout> min2 = tensor.minimum(reduction_axis4); | 
|  | VERIFY_IS_EQUAL(min2.rank(), 0); | 
|  |  | 
|  | VERIFY_IS_APPROX(min1(), min2()); | 
|  | } | 
|  |  | 
|  | reduction_axis2[0] = 0; | 
|  | reduction_axis2[1] = 1; | 
|  | result = tensor.mean(reduction_axis2); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 5); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 7); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | Scalar sum = Scalar(0.0f); | 
|  | int count = 0; | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | for (int l = 0; l < 3; ++l) { | 
|  | sum += tensor(k, l, i, j); | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(result(i, j), sum / Scalar(count)); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Tensor<Scalar, 0, DataLayout> mean1 = tensor.mean(); | 
|  | VERIFY_IS_EQUAL(mean1.rank(), 0); | 
|  |  | 
|  | array<ptrdiff_t, 4> reduction_axis4; | 
|  | reduction_axis4[0] = 0; | 
|  | reduction_axis4[1] = 1; | 
|  | reduction_axis4[2] = 2; | 
|  | reduction_axis4[3] = 3; | 
|  | Tensor<Scalar, 0, DataLayout> mean2 = tensor.mean(reduction_axis4); | 
|  | VERIFY_IS_EQUAL(mean2.rank(), 0); | 
|  |  | 
|  | VERIFY_IS_APPROX(mean1(), mean2()); | 
|  | } | 
|  |  | 
|  | { | 
|  | Tensor<int, 1> ints(10); | 
|  | std::iota(ints.data(), ints.data() + ints.dimension(0), 0); | 
|  |  | 
|  | TensorFixedSize<bool, Sizes<> > all_; | 
|  | all_ = ints.all(); | 
|  | VERIFY(!all_()); | 
|  | all_ = (ints >= ints.constant(0)).all(); | 
|  | VERIFY(all_()); | 
|  |  | 
|  | TensorFixedSize<bool, Sizes<> > any; | 
|  | any = (ints > ints.constant(10)).any(); | 
|  | VERIFY(!any()); | 
|  | any = (ints < ints.constant(1)).any(); | 
|  | VERIFY(any()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_reductions_in_expr() { | 
|  | Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 2> reduction_axis2; | 
|  | reduction_axis2[0] = 1; | 
|  | reduction_axis2[1] = 3; | 
|  |  | 
|  | Tensor<float, 2, DataLayout> result(2, 5); | 
|  | result = result.constant(1.0f) - tensor.sum(reduction_axis2); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 5); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | float sum = 0.0f; | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | sum += tensor(i, k, j, l); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(result(i, j), 1.0f - sum); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_full_reductions() { | 
|  | Tensor<float, 2, DataLayout> tensor(2, 3); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 2> reduction_axis; | 
|  | reduction_axis[0] = 0; | 
|  | reduction_axis[1] = 1; | 
|  |  | 
|  | Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); | 
|  | VERIFY_IS_EQUAL(result.rank(), 0); | 
|  |  | 
|  | float sum = 0.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | sum += tensor(i, j); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(result(0), sum); | 
|  |  | 
|  | result = tensor.square().sum(reduction_axis).sqrt(); | 
|  | VERIFY_IS_EQUAL(result.rank(), 0); | 
|  |  | 
|  | sum = 0.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | sum += tensor(i, j) * tensor(i, j); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(result(), sqrtf(sum)); | 
|  | } | 
|  |  | 
|  | struct UserReducer { | 
|  | static const bool PacketAccess = false; | 
|  | UserReducer(float offset) : offset_(offset) {} | 
|  | void reduce(const float val, float* accum) { *accum += val * val; } | 
|  | float initialize() const { return 0; } | 
|  | float finalize(const float accum) const { return 1.0f / (accum + offset_); } | 
|  |  | 
|  | private: | 
|  | const float offset_; | 
|  | }; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_user_defined_reductions() { | 
|  | Tensor<float, 2, DataLayout> tensor(5, 7); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 1> reduction_axis; | 
|  | reduction_axis[0] = 1; | 
|  |  | 
|  | UserReducer reducer(10.0f); | 
|  | Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 5); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | float expected = 10.0f; | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | expected += tensor(i, j) * tensor(i, j); | 
|  | } | 
|  | expected = 1.0f / expected; | 
|  | VERIFY_IS_APPROX(result(i), expected); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_tensor_maps() { | 
|  | int inputs[2 * 3 * 5 * 7]; | 
|  | TensorMap<Tensor<int, 4, DataLayout> > tensor_map(inputs, 2, 3, 5, 7); | 
|  | TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const(inputs, 2, 3, 5, | 
|  | 7); | 
|  | const TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const_const( | 
|  | inputs, 2, 3, 5, 7); | 
|  |  | 
|  | tensor_map.setRandom(); | 
|  | array<ptrdiff_t, 2> reduction_axis; | 
|  | reduction_axis[0] = 1; | 
|  | reduction_axis[1] = 3; | 
|  |  | 
|  | Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis); | 
|  | Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis); | 
|  | Tensor<int, 2, DataLayout> result3 = | 
|  | tensor_map_const_const.sum(reduction_axis); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | int sum = 0; | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | sum += tensor_map(i, k, j, l); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_EQUAL(result(i, j), sum); | 
|  | VERIFY_IS_EQUAL(result2(i, j), sum); | 
|  | VERIFY_IS_EQUAL(result3(i, j), sum); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_static_dims() { | 
|  | Tensor<float, 4, DataLayout> in(72, 53, 97, 113); | 
|  | Tensor<float, 2, DataLayout> out(72, 97); | 
|  | in.setRandom(); | 
|  |  | 
|  | #if !EIGEN_HAS_CONSTEXPR | 
|  | array<int, 2> reduction_axis; | 
|  | reduction_axis[0] = 1; | 
|  | reduction_axis[1] = 3; | 
|  | #else | 
|  | Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis; | 
|  | #endif | 
|  |  | 
|  | out = in.maximum(reduction_axis); | 
|  |  | 
|  | for (int i = 0; i < 72; ++i) { | 
|  | for (int j = 0; j < 97; ++j) { | 
|  | float expected = -1e10f; | 
|  | for (int k = 0; k < 53; ++k) { | 
|  | for (int l = 0; l < 113; ++l) { | 
|  | expected = (std::max)(expected, in(i, k, j, l)); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_EQUAL(out(i, j), expected); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_innermost_last_dims() { | 
|  | Tensor<float, 4, DataLayout> in(72, 53, 97, 113); | 
|  | Tensor<float, 2, DataLayout> out(97, 113); | 
|  | in.setRandom(); | 
|  |  | 
|  | // Reduce on the innermost dimensions. | 
|  | #if !EIGEN_HAS_CONSTEXPR | 
|  | array<int, 2> reduction_axis; | 
|  | reduction_axis[0] = 0; | 
|  | reduction_axis[1] = 1; | 
|  | #else | 
|  | // This triggers the use of packets for ColMajor. | 
|  | Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis; | 
|  | #endif | 
|  |  | 
|  | out = in.maximum(reduction_axis); | 
|  |  | 
|  | for (int i = 0; i < 97; ++i) { | 
|  | for (int j = 0; j < 113; ++j) { | 
|  | float expected = -1e10f; | 
|  | for (int k = 0; k < 53; ++k) { | 
|  | for (int l = 0; l < 72; ++l) { | 
|  | expected = (std::max)(expected, in(l, k, i, j)); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_EQUAL(out(i, j), expected); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_innermost_first_dims() { | 
|  | Tensor<float, 4, DataLayout> in(72, 53, 97, 113); | 
|  | Tensor<float, 2, DataLayout> out(72, 53); | 
|  | in.setRandom(); | 
|  |  | 
|  | // Reduce on the innermost dimensions. | 
|  | #if !EIGEN_HAS_CONSTEXPR | 
|  | array<int, 2> reduction_axis; | 
|  | reduction_axis[0] = 2; | 
|  | reduction_axis[1] = 3; | 
|  | #else | 
|  | // This triggers the use of packets for RowMajor. | 
|  | Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis; | 
|  | #endif | 
|  |  | 
|  | out = in.maximum(reduction_axis); | 
|  |  | 
|  | for (int i = 0; i < 72; ++i) { | 
|  | for (int j = 0; j < 53; ++j) { | 
|  | float expected = -1e10f; | 
|  | for (int k = 0; k < 97; ++k) { | 
|  | for (int l = 0; l < 113; ++l) { | 
|  | expected = (std::max)(expected, in(i, j, k, l)); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_EQUAL(out(i, j), expected); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_reduce_middle_dims() { | 
|  | Tensor<float, 4, DataLayout> in(72, 53, 97, 113); | 
|  | Tensor<float, 2, DataLayout> out(72, 53); | 
|  | in.setRandom(); | 
|  |  | 
|  | // Reduce on the innermost dimensions. | 
|  | #if !EIGEN_HAS_CONSTEXPR | 
|  | array<int, 2> reduction_axis; | 
|  | reduction_axis[0] = 1; | 
|  | reduction_axis[1] = 2; | 
|  | #else | 
|  | // This triggers the use of packets for RowMajor. | 
|  | Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis; | 
|  | #endif | 
|  |  | 
|  | out = in.maximum(reduction_axis); | 
|  |  | 
|  | for (int i = 0; i < 72; ++i) { | 
|  | for (int j = 0; j < 113; ++j) { | 
|  | float expected = -1e10f; | 
|  | for (int k = 0; k < 53; ++k) { | 
|  | for (int l = 0; l < 97; ++l) { | 
|  | expected = (std::max)(expected, in(i, k, l, j)); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_EQUAL(out(i, j), expected); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename ScalarType, int num_elements, int max_mean> | 
|  | void test_sum_accuracy() { | 
|  | Tensor<double, 1> double_tensor(num_elements); | 
|  | Tensor<ScalarType, 1> tensor(num_elements); | 
|  | for (double prescribed_mean = 0; prescribed_mean <= max_mean; prescribed_mean = numext::maxi(1.0, prescribed_mean*3.99)) { | 
|  | // FIXME: NormalRandomGenerator doesn't work in bfloat and half. | 
|  | double_tensor.setRandom<Eigen::internal::NormalRandomGenerator<double>>(); | 
|  | double_tensor += double_tensor.constant(prescribed_mean); | 
|  | tensor = double_tensor.cast<ScalarType>(); | 
|  |  | 
|  | Tensor<ScalarType, 0> sum; | 
|  | sum = tensor.sum(); | 
|  |  | 
|  | // Compute the reference value in double precsion. | 
|  | double expected_sum = 0.0; | 
|  | double abs_sum = 0.0; | 
|  | for (int i = 0; i < num_elements; ++i) { | 
|  | expected_sum += static_cast<double>(tensor(i)); | 
|  | abs_sum += static_cast<double>(numext::abs(tensor(i))); | 
|  | } | 
|  | // Test against probabilistic forward error bound. In reality, the error is much smaller | 
|  | // when we use tree summation. | 
|  | double err = Eigen::numext::abs(static_cast<double>(sum()) - expected_sum); | 
|  | double tol = numext::sqrt(num_elements) * NumTraits<ScalarType>::epsilon() * static_cast<ScalarType>(abs_sum); | 
|  | VERIFY_LE(err, tol); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_reduction) { | 
|  | CALL_SUBTEST(test_trivial_reductions<ColMajor>()); | 
|  | CALL_SUBTEST(test_trivial_reductions<RowMajor>()); | 
|  | CALL_SUBTEST(( test_simple_reductions<float,ColMajor>() )); | 
|  | CALL_SUBTEST(( test_simple_reductions<float,RowMajor>() )); | 
|  | CALL_SUBTEST(( test_simple_reductions<Eigen::half,ColMajor>() )); | 
|  | CALL_SUBTEST(( test_simple_reductions<Eigen::bfloat16,ColMajor>() )); | 
|  | CALL_SUBTEST(test_reductions_in_expr<ColMajor>()); | 
|  | CALL_SUBTEST(test_reductions_in_expr<RowMajor>()); | 
|  | CALL_SUBTEST(test_full_reductions<ColMajor>()); | 
|  | CALL_SUBTEST(test_full_reductions<RowMajor>()); | 
|  | CALL_SUBTEST(test_user_defined_reductions<ColMajor>()); | 
|  | CALL_SUBTEST(test_user_defined_reductions<RowMajor>()); | 
|  | CALL_SUBTEST(test_tensor_maps<ColMajor>()); | 
|  | CALL_SUBTEST(test_tensor_maps<RowMajor>()); | 
|  | CALL_SUBTEST(test_static_dims<ColMajor>()); | 
|  | CALL_SUBTEST(test_static_dims<RowMajor>()); | 
|  | CALL_SUBTEST(test_innermost_last_dims<ColMajor>()); | 
|  | CALL_SUBTEST(test_innermost_last_dims<RowMajor>()); | 
|  | CALL_SUBTEST(test_innermost_first_dims<ColMajor>()); | 
|  | CALL_SUBTEST(test_innermost_first_dims<RowMajor>()); | 
|  | CALL_SUBTEST(test_reduce_middle_dims<ColMajor>()); | 
|  | CALL_SUBTEST(test_reduce_middle_dims<RowMajor>()); | 
|  | CALL_SUBTEST((test_sum_accuracy<float,10*1024*1024,8*1024>())); | 
|  | CALL_SUBTEST((test_sum_accuracy<Eigen::bfloat16,10*1024*1024,8*1024>())); | 
|  | // The range of half is limited to 65519 when using round-to-even, | 
|  | // so we are severely limited in the size and mean of the tensors | 
|  | // we can reduce without overflow. | 
|  | CALL_SUBTEST((test_sum_accuracy<Eigen::half,4*1024,16>())); | 
|  | CALL_SUBTEST((test_sum_accuracy<Eigen::half,10*1024*1024,0>())); | 
|  | } |