blob: 262c5c6966f1461faa07a15f95ad750ef27ebe62 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "lapack_common.h"
#include <Eigen/SVD>
#if ISCOMPLEX
#define EIGEN_LAPACK_ARG_IF_COMPLEX(X) X,
#else
#define EIGEN_LAPACK_ARG_IF_COMPLEX(X)
#endif
// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
EIGEN_LAPACK_FUNC(gesdd)
(char *jobz, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt,
Scalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int * /*iwork*/, int *info) {
// TODO exploit the work buffer
bool query_size = *lwork == -1;
int diag_size = (std::min)(*m, *n);
*info = 0;
if (*jobz != 'A' && *jobz != 'S' && *jobz != 'O' && *jobz != 'N')
*info = -1;
else if (*m < 0)
*info = -2;
else if (*n < 0)
*info = -3;
else if (*lda < std::max(1, *m))
*info = -5;
else if (*lda < std::max(1, *m))
*info = -8;
else if (*ldu < 1 || (*jobz == 'A' && *ldu < *m) || (*jobz == 'O' && *m < *n && *ldu < *m))
*info = -8;
else if (*ldvt < 1 || (*jobz == 'A' && *ldvt < *n) || (*jobz == 'S' && *ldvt < diag_size) ||
(*jobz == 'O' && *m >= *n && *ldvt < *n))
*info = -10;
if (*info != 0) {
int e = -*info;
return xerbla_(SCALAR_SUFFIX_UP "GESDD ", &e);
}
if (query_size) {
*lwork = 0;
return;
}
if (*n == 0 || *m == 0) return;
PlainMatrixType mat(*m, *n);
mat = matrix(a, *m, *n, *lda);
int option = *jobz == 'A' ? Eigen::ComputeFullU | Eigen::ComputeFullV
: *jobz == 'S' ? Eigen::ComputeThinU | Eigen::ComputeThinV
: *jobz == 'O' ? Eigen::ComputeThinU | Eigen::ComputeThinV
: 0;
Eigen::BDCSVD<PlainMatrixType> svd(mat, option);
make_vector(s, diag_size) = svd.singularValues().head(diag_size);
if (*jobz == 'A') {
matrix(u, *m, *m, *ldu) = svd.matrixU();
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
} else if (*jobz == 'S') {
matrix(u, *m, diag_size, *ldu) = svd.matrixU();
matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint();
} else if (*jobz == 'O' && *m >= *n) {
matrix(a, *m, *n, *lda) = svd.matrixU();
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
} else if (*jobz == 'O') {
matrix(u, *m, *m, *ldu) = svd.matrixU();
matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint();
}
}
// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
EIGEN_LAPACK_FUNC(gesvd)
(char *jobu, char *jobv, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt,
Scalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int *info) {
// TODO exploit the work buffer
bool query_size = *lwork == -1;
int diag_size = (std::min)(*m, *n);
*info = 0;
if (*jobu != 'A' && *jobu != 'S' && *jobu != 'O' && *jobu != 'N')
*info = -1;
else if ((*jobv != 'A' && *jobv != 'S' && *jobv != 'O' && *jobv != 'N') || (*jobu == 'O' && *jobv == 'O'))
*info = -2;
else if (*m < 0)
*info = -3;
else if (*n < 0)
*info = -4;
else if (*lda < std::max(1, *m))
*info = -6;
else if (*ldu < 1 || ((*jobu == 'A' || *jobu == 'S') && *ldu < *m))
*info = -9;
else if (*ldvt < 1 || (*jobv == 'A' && *ldvt < *n) || (*jobv == 'S' && *ldvt < diag_size))
*info = -11;
if (*info != 0) {
int e = -*info;
return xerbla_(SCALAR_SUFFIX_UP "GESVD ", &e);
}
if (query_size) {
*lwork = 0;
return;
}
if (*n == 0 || *m == 0) return;
PlainMatrixType mat(*m, *n);
mat = matrix(a, *m, *n, *lda);
int option = (*jobu == 'A' ? Eigen::ComputeFullU
: *jobu == 'S' || *jobu == 'O' ? Eigen::ComputeThinU
: 0) |
(*jobv == 'A' ? Eigen::ComputeFullV
: *jobv == 'S' || *jobv == 'O' ? Eigen::ComputeThinV
: 0);
Eigen::JacobiSVD<PlainMatrixType> svd(mat, option);
make_vector(s, diag_size) = svd.singularValues().head(diag_size);
{
if (*jobu == 'A')
matrix(u, *m, *m, *ldu) = svd.matrixU();
else if (*jobu == 'S')
matrix(u, *m, diag_size, *ldu) = svd.matrixU();
else if (*jobu == 'O')
matrix(a, *m, diag_size, *lda) = svd.matrixU();
}
{
if (*jobv == 'A')
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
else if (*jobv == 'S')
matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint();
else if (*jobv == 'O')
matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint();
}
}
#undef EIGEN_LAPACK_ARG_IF_COMPLEX