| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // discard stack allocation as that too bypasses malloc |
| #define EIGEN_STACK_ALLOCATION_LIMIT 0 |
| // heap allocation will raise an assert if enabled at runtime |
| #define EIGEN_RUNTIME_NO_MALLOC |
| |
| #include "main.h" |
| using namespace std; |
| template <typename MatrixType> |
| void diagonalmatrices(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; |
| typedef Matrix<Scalar, Rows, 1> VectorType; |
| typedef Matrix<Scalar, 1, Cols> RowVectorType; |
| typedef Matrix<Scalar, Rows, Rows> SquareMatrixType; |
| typedef Matrix<Scalar, Dynamic, Dynamic> DynMatrixType; |
| typedef DiagonalMatrix<Scalar, Rows> LeftDiagonalMatrix; |
| typedef DiagonalMatrix<Scalar, Cols> RightDiagonalMatrix; |
| typedef Matrix<Scalar, Rows == Dynamic ? Dynamic : 2 * Rows, Cols == Dynamic ? Dynamic : 2 * Cols> BigMatrix; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols); |
| VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows); |
| RowVectorType rv1 = RowVectorType::Random(cols), rv2 = RowVectorType::Random(cols); |
| |
| LeftDiagonalMatrix ldm1(v1), ldm2(v2); |
| RightDiagonalMatrix rdm1(rv1), rdm2(rv2); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| SquareMatrixType sq_m1(v1.asDiagonal()); |
| VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); |
| sq_m1 = v1.asDiagonal(); |
| VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); |
| SquareMatrixType sq_m2 = v1.asDiagonal(); |
| VERIFY_IS_APPROX(sq_m1, sq_m2); |
| |
| ldm1 = v1.asDiagonal(); |
| LeftDiagonalMatrix ldm3(v1); |
| VERIFY_IS_APPROX(ldm1.diagonal(), ldm3.diagonal()); |
| LeftDiagonalMatrix ldm4 = v1.asDiagonal(); |
| VERIFY_IS_APPROX(ldm1.diagonal(), ldm4.diagonal()); |
| |
| sq_m1.block(0, 0, rows, rows) = ldm1; |
| VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix()); |
| sq_m1.transpose() = ldm1; |
| VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix()); |
| |
| Index i = internal::random<Index>(0, rows - 1); |
| Index j = internal::random<Index>(0, cols - 1); |
| |
| internal::set_is_malloc_allowed(false); |
| VERIFY_IS_APPROX(((ldm1 * m1)(i, j)), ldm1.diagonal()(i) * m1(i, j)); |
| VERIFY_IS_APPROX(((ldm1 * (m1 + m2))(i, j)), ldm1.diagonal()(i) * (m1 + m2)(i, j)); |
| VERIFY_IS_APPROX(((m1 * rdm1)(i, j)), rdm1.diagonal()(j) * m1(i, j)); |
| VERIFY_IS_APPROX(((v1.asDiagonal() * m1)(i, j)), v1(i) * m1(i, j)); |
| VERIFY_IS_APPROX(((m1 * rv1.asDiagonal())(i, j)), rv1(j) * m1(i, j)); |
| VERIFY_IS_APPROX((((v1 + v2).asDiagonal() * m1)(i, j)), (v1 + v2)(i)*m1(i, j)); |
| VERIFY_IS_APPROX((((v1 + v2).asDiagonal() * (m1 + m2))(i, j)), (v1 + v2)(i) * (m1 + m2)(i, j)); |
| VERIFY_IS_APPROX(((m1 * (rv1 + rv2).asDiagonal())(i, j)), (rv1 + rv2)(j)*m1(i, j)); |
| VERIFY_IS_APPROX((((m1 + m2) * (rv1 + rv2).asDiagonal())(i, j)), (rv1 + rv2)(j) * (m1 + m2)(i, j)); |
| VERIFY_IS_APPROX((ldm1 * ldm1).diagonal()(i), ldm1.diagonal()(i) * ldm1.diagonal()(i)); |
| VERIFY_IS_APPROX((ldm1 * ldm1 * m1)(i, j), ldm1.diagonal()(i) * ldm1.diagonal()(i) * m1(i, j)); |
| VERIFY_IS_APPROX(((v1.asDiagonal() * v1.asDiagonal()).diagonal()(i)), v1(i) * v1(i)); |
| internal::set_is_malloc_allowed(true); |
| |
| if (rows > 1) { |
| DynMatrixType tmp = m1.topRows(rows / 2), res; |
| VERIFY_IS_APPROX((res = m1.topRows(rows / 2) * rv1.asDiagonal()), tmp * rv1.asDiagonal()); |
| VERIFY_IS_APPROX((res = v1.head(rows / 2).asDiagonal() * m1.topRows(rows / 2)), |
| v1.head(rows / 2).asDiagonal() * tmp); |
| } |
| |
| BigMatrix big; |
| big.setZero(2 * rows, 2 * cols); |
| |
| big.block(i, j, rows, cols) = m1; |
| big.block(i, j, rows, cols) = v1.asDiagonal() * big.block(i, j, rows, cols); |
| |
| VERIFY_IS_APPROX((big.block(i, j, rows, cols)), v1.asDiagonal() * m1); |
| |
| big.block(i, j, rows, cols) = m1; |
| big.block(i, j, rows, cols) = big.block(i, j, rows, cols) * rv1.asDiagonal(); |
| VERIFY_IS_APPROX((big.block(i, j, rows, cols)), m1 * rv1.asDiagonal()); |
| |
| // products do not allocate memory |
| MatrixType res(rows, cols); |
| internal::set_is_malloc_allowed(false); |
| res.noalias() = ldm1 * m1; |
| res.noalias() = m1 * rdm1; |
| res.noalias() = ldm1 * m1 * rdm1; |
| res.noalias() = LeftDiagonalMatrix::Identity(rows) * m1 * RightDiagonalMatrix::Zero(cols); |
| internal::set_is_malloc_allowed(true); |
| |
| // scalar multiple |
| VERIFY_IS_APPROX(LeftDiagonalMatrix(ldm1 * s1).diagonal(), ldm1.diagonal() * s1); |
| VERIFY_IS_APPROX(LeftDiagonalMatrix(s1 * ldm1).diagonal(), s1 * ldm1.diagonal()); |
| |
| VERIFY_IS_APPROX(m1 * (rdm1 * s1), (m1 * rdm1) * s1); |
| VERIFY_IS_APPROX(m1 * (s1 * rdm1), (m1 * rdm1) * s1); |
| |
| // Diagonal to dense |
| sq_m1.setRandom(); |
| sq_m2 = sq_m1; |
| VERIFY_IS_APPROX((sq_m1 += (s1 * v1).asDiagonal()), sq_m2 += (s1 * v1).asDiagonal().toDenseMatrix()); |
| VERIFY_IS_APPROX((sq_m1 -= (s1 * v1).asDiagonal()), sq_m2 -= (s1 * v1).asDiagonal().toDenseMatrix()); |
| VERIFY_IS_APPROX((sq_m1 = (s1 * v1).asDiagonal()), (s1 * v1).asDiagonal().toDenseMatrix()); |
| |
| sq_m1.setRandom(); |
| sq_m2 = v1.asDiagonal(); |
| sq_m2 = sq_m1 * sq_m2; |
| VERIFY_IS_APPROX((sq_m1 * v1.asDiagonal()).col(i), sq_m2.col(i)); |
| VERIFY_IS_APPROX((sq_m1 * v1.asDiagonal()).row(i), sq_m2.row(i)); |
| |
| sq_m1 = v1.asDiagonal(); |
| sq_m2 = v2.asDiagonal(); |
| SquareMatrixType sq_m3 = v1.asDiagonal(); |
| VERIFY_IS_APPROX(sq_m3 = v1.asDiagonal() + v2.asDiagonal(), sq_m1 + sq_m2); |
| VERIFY_IS_APPROX(sq_m3 = v1.asDiagonal() - v2.asDiagonal(), sq_m1 - sq_m2); |
| VERIFY_IS_APPROX(sq_m3 = v1.asDiagonal() - 2 * v2.asDiagonal() + v1.asDiagonal(), sq_m1 - 2 * sq_m2 + sq_m1); |
| |
| // Zero and Identity |
| LeftDiagonalMatrix zero = LeftDiagonalMatrix::Zero(rows); |
| LeftDiagonalMatrix identity = LeftDiagonalMatrix::Identity(rows); |
| VERIFY_IS_APPROX(identity.diagonal().sum(), Scalar(rows)); |
| VERIFY_IS_APPROX(zero.diagonal().sum(), Scalar(0)); |
| VERIFY_IS_APPROX((zero + 2 * LeftDiagonalMatrix::Identity(rows)).diagonal().sum(), Scalar(2 * rows)); |
| } |
| |
| template <typename MatrixType> |
| void as_scalar_product(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, Dynamic, Dynamic> DynMatrixType; |
| typedef Matrix<Scalar, Dynamic, 1> DynVectorType; |
| typedef Matrix<Scalar, 1, Dynamic> DynRowVectorType; |
| |
| Index rows = m.rows(); |
| Index depth = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| |
| VectorType v1 = VectorType::Random(rows); |
| DynVectorType dv1 = DynVectorType::Random(depth); |
| DynRowVectorType drv1 = DynRowVectorType::Random(depth); |
| DynMatrixType dm1 = dv1; |
| DynMatrixType drm1 = drv1; |
| |
| Scalar s = v1(0); |
| |
| VERIFY_IS_APPROX(v1.asDiagonal() * drv1, s * drv1); |
| VERIFY_IS_APPROX(dv1 * v1.asDiagonal(), dv1 * s); |
| |
| VERIFY_IS_APPROX(v1.asDiagonal() * drm1, s * drm1); |
| VERIFY_IS_APPROX(dm1 * v1.asDiagonal(), dm1 * s); |
| } |
| |
| template <int> |
| void bug987() { |
| Matrix3Xd points = Matrix3Xd::Random(3, 3); |
| Vector2d diag = Vector2d::Random(); |
| Matrix2Xd tmp1 = points.topRows<2>(), res1, res2; |
| VERIFY_IS_APPROX(res1 = diag.asDiagonal() * points.topRows<2>(), res2 = diag.asDiagonal() * tmp1); |
| Matrix2d tmp2 = points.topLeftCorner<2, 2>(); |
| VERIFY_IS_APPROX((res1 = points.topLeftCorner<2, 2>() * diag.asDiagonal()), res2 = tmp2 * diag.asDiagonal()); |
| } |
| |
| EIGEN_DECLARE_TEST(diagonalmatrices) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(diagonalmatrices(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_1(as_scalar_product(Matrix<float, 1, 1>())); |
| |
| CALL_SUBTEST_2(diagonalmatrices(Matrix3f())); |
| CALL_SUBTEST_3(diagonalmatrices(Matrix<double, 3, 3, RowMajor>())); |
| CALL_SUBTEST_4(diagonalmatrices(Matrix4d())); |
| CALL_SUBTEST_5(diagonalmatrices(Matrix<float, 4, 4, RowMajor>())); |
| CALL_SUBTEST_6(diagonalmatrices( |
| MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_6(as_scalar_product(MatrixXcf(1, 1))); |
| CALL_SUBTEST_7(diagonalmatrices( |
| MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_8(diagonalmatrices(Matrix<double, Dynamic, Dynamic, RowMajor>( |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_9(diagonalmatrices( |
| MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_9(diagonalmatrices(MatrixXf(1, 1))); |
| CALL_SUBTEST_9(as_scalar_product(MatrixXf(1, 1))); |
| } |
| CALL_SUBTEST_10(bug987<0>()); |
| } |