| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| static bool g_called; |
| #define EIGEN_SCALAR_BINARY_OP_PLUGIN \ |
| { g_called |= (!internal::is_same<LhsScalar, RhsScalar>::value); } |
| |
| #include "main.h" |
| |
| template <typename MatrixType> |
| void linearStructure(const MatrixType& m) { |
| using std::abs; |
| /* this test covers the following files: |
| CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h |
| */ |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| // this test relies a lot on Random.h, and there's not much more that we can do |
| // to test it, hence I consider that we will have tested Random.h |
| MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| while (abs(s1) < RealScalar(1e-3)) s1 = internal::random<Scalar>(); |
| |
| Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); |
| |
| VERIFY_IS_APPROX(-(-m1), m1); |
| VERIFY_IS_APPROX(m1 + m1, 2 * m1); |
| VERIFY_IS_APPROX(m1 + m2 - m1, m2); |
| VERIFY_IS_APPROX(-m2 + m1 + m2, m1); |
| VERIFY_IS_APPROX(m1 * s1, s1 * m1); |
| VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2); |
| VERIFY_IS_APPROX((-m1 + m2) * s1, -s1 * m1 + s1 * m2); |
| m3 = m2; |
| m3 += m1; |
| VERIFY_IS_APPROX(m3, m1 + m2); |
| m3 = m2; |
| m3 -= m1; |
| VERIFY_IS_APPROX(m3, m2 - m1); |
| m3 = m2; |
| m3 *= s1; |
| VERIFY_IS_APPROX(m3, s1 * m2); |
| if (!NumTraits<Scalar>::IsInteger) { |
| m3 = m2; |
| m3 /= s1; |
| VERIFY_IS_APPROX(m3, m2 / s1); |
| } |
| |
| // again, test operator() to check const-qualification |
| VERIFY_IS_APPROX((-m1)(r, c), -(m1(r, c))); |
| VERIFY_IS_APPROX((m1 - m2)(r, c), (m1(r, c)) - (m2(r, c))); |
| VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c))); |
| VERIFY_IS_APPROX((s1 * m1)(r, c), s1 * (m1(r, c))); |
| VERIFY_IS_APPROX((m1 * s1)(r, c), (m1(r, c)) * s1); |
| if (!NumTraits<Scalar>::IsInteger) VERIFY_IS_APPROX((m1 / s1)(r, c), (m1(r, c)) / s1); |
| |
| // use .block to disable vectorization and compare to the vectorized version |
| VERIFY_IS_APPROX(m1 + m1.block(0, 0, rows, cols), m1 + m1); |
| VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), m1.cwiseProduct(m1)); |
| VERIFY_IS_APPROX(m1 - m1.block(0, 0, rows, cols), m1 - m1); |
| VERIFY_IS_APPROX(m1.block(0, 0, rows, cols) * s1, m1 * s1); |
| } |
| |
| // Make sure that complex * real and real * complex are properly optimized |
| template <typename MatrixType> |
| void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| RealScalar s = internal::random<RealScalar>(); |
| MatrixType m1 = MatrixType::Random(rows, cols); |
| |
| g_called = false; |
| VERIFY_IS_APPROX(s * m1, Scalar(s) * m1); |
| VERIFY(g_called && "real * matrix<complex> not properly optimized"); |
| |
| g_called = false; |
| VERIFY_IS_APPROX(m1 * s, m1 * Scalar(s)); |
| VERIFY(g_called && "matrix<complex> * real not properly optimized"); |
| |
| g_called = false; |
| VERIFY_IS_APPROX(m1 / s, m1 / Scalar(s)); |
| VERIFY(g_called && "matrix<complex> / real not properly optimized"); |
| |
| g_called = false; |
| VERIFY_IS_APPROX(s + m1.array(), Scalar(s) + m1.array()); |
| VERIFY(g_called && "real + matrix<complex> not properly optimized"); |
| |
| g_called = false; |
| VERIFY_IS_APPROX(m1.array() + s, m1.array() + Scalar(s)); |
| VERIFY(g_called && "matrix<complex> + real not properly optimized"); |
| |
| g_called = false; |
| VERIFY_IS_APPROX(s - m1.array(), Scalar(s) - m1.array()); |
| VERIFY(g_called && "real - matrix<complex> not properly optimized"); |
| |
| g_called = false; |
| VERIFY_IS_APPROX(m1.array() - s, m1.array() - Scalar(s)); |
| VERIFY(g_called && "matrix<complex> - real not properly optimized"); |
| } |
| |
| template <int> |
| void linearstructure_overflow() { |
| // make sure that /=scalar and /scalar do not overflow |
| // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not |
| Matrix4d m2, m3; |
| m3 = m2 = Matrix4d::Random() * 1e-20; |
| m2 = m2 / 4.9e-320; |
| VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones()); |
| m3 /= 4.9e-320; |
| VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones()); |
| } |
| |
| EIGEN_DECLARE_TEST(linearstructure) { |
| g_called = true; |
| VERIFY(g_called); // avoid `unneeded-internal-declaration` warning. |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(linearStructure(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(linearStructure(Matrix2f())); |
| CALL_SUBTEST_3(linearStructure(Vector3d())); |
| CALL_SUBTEST_4(linearStructure(Matrix4d())); |
| CALL_SUBTEST_5(linearStructure(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); |
| CALL_SUBTEST_6(linearStructure( |
| MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_7(linearStructure( |
| MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_8(linearStructure(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); |
| CALL_SUBTEST_9(linearStructure( |
| ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_10(linearStructure( |
| ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| |
| CALL_SUBTEST_11(real_complex<Matrix4cd>()); |
| CALL_SUBTEST_11(real_complex<MatrixXcf>(10, 10)); |
| CALL_SUBTEST_11(real_complex<ArrayXXcf>(10, 10)); |
| } |
| CALL_SUBTEST_4(linearstructure_overflow<0>()); |
| } |