blob: e5684a52f100645a9b1401580feee20d10fa2d17 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
static bool g_called;
#define EIGEN_SCALAR_BINARY_OP_PLUGIN \
{ g_called |= (!internal::is_same<LhsScalar, RhsScalar>::value); }
#include "main.h"
template <typename MatrixType>
void linearStructure(const MatrixType& m) {
using std::abs;
/* this test covers the following files:
CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
*/
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols);
Scalar s1 = internal::random<Scalar>();
while (abs(s1) < RealScalar(1e-3)) s1 = internal::random<Scalar>();
Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
VERIFY_IS_APPROX(-(-m1), m1);
VERIFY_IS_APPROX(m1 + m1, 2 * m1);
VERIFY_IS_APPROX(m1 + m2 - m1, m2);
VERIFY_IS_APPROX(-m2 + m1 + m2, m1);
VERIFY_IS_APPROX(m1 * s1, s1 * m1);
VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2);
VERIFY_IS_APPROX((-m1 + m2) * s1, -s1 * m1 + s1 * m2);
m3 = m2;
m3 += m1;
VERIFY_IS_APPROX(m3, m1 + m2);
m3 = m2;
m3 -= m1;
VERIFY_IS_APPROX(m3, m2 - m1);
m3 = m2;
m3 *= s1;
VERIFY_IS_APPROX(m3, s1 * m2);
if (!NumTraits<Scalar>::IsInteger) {
m3 = m2;
m3 /= s1;
VERIFY_IS_APPROX(m3, m2 / s1);
}
// again, test operator() to check const-qualification
VERIFY_IS_APPROX((-m1)(r, c), -(m1(r, c)));
VERIFY_IS_APPROX((m1 - m2)(r, c), (m1(r, c)) - (m2(r, c)));
VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c)));
VERIFY_IS_APPROX((s1 * m1)(r, c), s1 * (m1(r, c)));
VERIFY_IS_APPROX((m1 * s1)(r, c), (m1(r, c)) * s1);
if (!NumTraits<Scalar>::IsInteger) VERIFY_IS_APPROX((m1 / s1)(r, c), (m1(r, c)) / s1);
// use .block to disable vectorization and compare to the vectorized version
VERIFY_IS_APPROX(m1 + m1.block(0, 0, rows, cols), m1 + m1);
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), m1.cwiseProduct(m1));
VERIFY_IS_APPROX(m1 - m1.block(0, 0, rows, cols), m1 - m1);
VERIFY_IS_APPROX(m1.block(0, 0, rows, cols) * s1, m1 * s1);
}
// Make sure that complex * real and real * complex are properly optimized
template <typename MatrixType>
void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime) {
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
RealScalar s = internal::random<RealScalar>();
MatrixType m1 = MatrixType::Random(rows, cols);
g_called = false;
VERIFY_IS_APPROX(s * m1, Scalar(s) * m1);
VERIFY(g_called && "real * matrix<complex> not properly optimized");
g_called = false;
VERIFY_IS_APPROX(m1 * s, m1 * Scalar(s));
VERIFY(g_called && "matrix<complex> * real not properly optimized");
g_called = false;
VERIFY_IS_APPROX(m1 / s, m1 / Scalar(s));
VERIFY(g_called && "matrix<complex> / real not properly optimized");
g_called = false;
VERIFY_IS_APPROX(s + m1.array(), Scalar(s) + m1.array());
VERIFY(g_called && "real + matrix<complex> not properly optimized");
g_called = false;
VERIFY_IS_APPROX(m1.array() + s, m1.array() + Scalar(s));
VERIFY(g_called && "matrix<complex> + real not properly optimized");
g_called = false;
VERIFY_IS_APPROX(s - m1.array(), Scalar(s) - m1.array());
VERIFY(g_called && "real - matrix<complex> not properly optimized");
g_called = false;
VERIFY_IS_APPROX(m1.array() - s, m1.array() - Scalar(s));
VERIFY(g_called && "matrix<complex> - real not properly optimized");
}
template <int>
void linearstructure_overflow() {
// make sure that /=scalar and /scalar do not overflow
// rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
Matrix4d m2, m3;
m3 = m2 = Matrix4d::Random() * 1e-20;
m2 = m2 / 4.9e-320;
VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
m3 /= 4.9e-320;
VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
}
EIGEN_DECLARE_TEST(linearstructure) {
g_called = true;
VERIFY(g_called); // avoid `unneeded-internal-declaration` warning.
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(linearStructure(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(linearStructure(Matrix2f()));
CALL_SUBTEST_3(linearStructure(Vector3d()));
CALL_SUBTEST_4(linearStructure(Matrix4d()));
CALL_SUBTEST_5(linearStructure(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
CALL_SUBTEST_6(linearStructure(
MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_7(linearStructure(
MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_8(linearStructure(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
CALL_SUBTEST_9(linearStructure(
ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_10(linearStructure(
ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_11(real_complex<Matrix4cd>());
CALL_SUBTEST_11(real_complex<MatrixXcf>(10, 10));
CALL_SUBTEST_11(real_complex<ArrayXXcf>(10, 10));
}
CALL_SUBTEST_4(linearstructure_overflow<0>());
}