| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <typename MatrixType> |
| bool equalsIdentity(const MatrixType& A) { |
| bool offDiagOK = true; |
| for (Index i = 0; i < A.rows(); ++i) { |
| for (Index j = i + 1; j < A.cols(); ++j) { |
| offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j)); |
| } |
| } |
| for (Index i = 0; i < A.rows(); ++i) { |
| for (Index j = 0; j < (std::min)(i, A.cols()); ++j) { |
| offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j)); |
| } |
| } |
| |
| bool diagOK = (A.diagonal().array() == 1).all(); |
| return offDiagOK && diagOK; |
| } |
| |
| template <typename VectorType> |
| void check_extremity_accuracy(const VectorType& v, const typename VectorType::Scalar& low, |
| const typename VectorType::Scalar& high) { |
| typedef typename VectorType::Scalar Scalar; |
| typedef typename VectorType::RealScalar RealScalar; |
| |
| RealScalar prec = internal::is_same<RealScalar, float>::value ? NumTraits<RealScalar>::dummy_precision() * 10 |
| : NumTraits<RealScalar>::dummy_precision() / 10; |
| Index size = v.size(); |
| |
| if (size < 20) return; |
| |
| for (int i = 0; i < size; ++i) { |
| if (i < 5 || i > size - 6) { |
| Scalar ref = |
| (low * RealScalar(size - i - 1)) / RealScalar(size - 1) + (high * RealScalar(i)) / RealScalar(size - 1); |
| if (std::abs(ref) > 1) { |
| if (!internal::isApprox(v(i), ref, prec)) |
| std::cout << v(i) << " != " << ref << " ; relative error: " << std::abs((v(i) - ref) / ref) |
| << " ; required precision: " << prec << " ; range: " << low << "," << high << " ; i: " << i |
| << "\n"; |
| VERIFY(internal::isApprox( |
| v(i), |
| (low * RealScalar(size - i - 1)) / RealScalar(size - 1) + (high * RealScalar(i)) / RealScalar(size - 1), |
| prec)); |
| } |
| } |
| } |
| } |
| |
| template <typename VectorType> |
| void testVectorType(const VectorType& base) { |
| typedef typename VectorType::Scalar Scalar; |
| typedef typename VectorType::RealScalar RealScalar; |
| |
| const Index size = base.size(); |
| |
| Scalar high = internal::random<Scalar>(-500, 500); |
| Scalar low = (size == 1 ? high : internal::random<Scalar>(-500, 500)); |
| if (numext::real(low) > numext::real(high)) std::swap(low, high); |
| |
| // check low==high |
| if (internal::random<float>(0.f, 1.f) < 0.05f) low = high; |
| // check abs(low) >> abs(high) |
| else if (size > 2 && std::numeric_limits<RealScalar>::max_exponent10 > 0 && internal::random<float>(0.f, 1.f) < 0.1f) |
| low = -internal::random<Scalar>(1, 2) * |
| RealScalar(std::pow(RealScalar(10), std::numeric_limits<RealScalar>::max_exponent10 / 2)); |
| |
| const Scalar step = ((size == 1) ? 1 : (high - low) / RealScalar(size - 1)); |
| |
| // check whether the result yields what we expect it to do |
| VectorType m(base), o(base); |
| m.setLinSpaced(size, low, high); |
| o.setEqualSpaced(size, low, step); |
| |
| if (!NumTraits<Scalar>::IsInteger) { |
| VectorType n(size); |
| for (int i = 0; i < size; ++i) n(i) = low + RealScalar(i) * step; |
| VERIFY_IS_APPROX(m, n); |
| VERIFY_IS_APPROX(n, o); |
| |
| CALL_SUBTEST(check_extremity_accuracy(m, low, high)); |
| } |
| |
| RealScalar range_length = numext::real(high - low); |
| if ((!NumTraits<Scalar>::IsInteger) || (range_length >= size && (Index(range_length) % (size - 1)) == 0) || |
| (Index(range_length + 1) < size && (size % Index(range_length + 1)) == 0)) { |
| VectorType n(size); |
| if ((!NumTraits<Scalar>::IsInteger) || (range_length >= size)) |
| for (int i = 0; i < size; ++i) n(i) = size == 1 ? low : (low + ((high - low) * Scalar(i)) / RealScalar(size - 1)); |
| else |
| for (int i = 0; i < size; ++i) |
| n(i) = size == 1 ? low : low + Scalar((double(range_length + 1) * double(i)) / double(size)); |
| VERIFY_IS_APPROX(m, n); |
| |
| // random access version |
| m = VectorType::LinSpaced(size, low, high); |
| VERIFY_IS_APPROX(m, n); |
| VERIFY(internal::isApprox(m(m.size() - 1), high)); |
| VERIFY(size == 1 || internal::isApprox(m(0), low)); |
| VERIFY_IS_EQUAL(m(m.size() - 1), high); |
| if (!NumTraits<Scalar>::IsInteger) CALL_SUBTEST(check_extremity_accuracy(m, low, high)); |
| } |
| |
| VERIFY(numext::real(m(m.size() - 1)) <= numext::real(high)); |
| VERIFY((m.array().real() <= numext::real(high)).all()); |
| VERIFY((m.array().real() >= numext::real(low)).all()); |
| |
| VERIFY(numext::real(m(m.size() - 1)) >= numext::real(low)); |
| if (size >= 1) { |
| VERIFY(internal::isApprox(m(0), low)); |
| VERIFY_IS_EQUAL(m(0), low); |
| } |
| |
| // check whether everything works with row and col major vectors |
| Matrix<Scalar, Dynamic, 1> row_vector(size); |
| Matrix<Scalar, 1, Dynamic> col_vector(size); |
| row_vector.setLinSpaced(size, low, high); |
| col_vector.setLinSpaced(size, low, high); |
| // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit |
| // when computing the squared sum in isApprox, thus the 2x factor. |
| VERIFY(row_vector.isApprox(col_vector.transpose(), RealScalar(2) * NumTraits<Scalar>::epsilon())); |
| |
| Matrix<Scalar, Dynamic, 1> size_changer(size + 50); |
| size_changer.setLinSpaced(size, low, high); |
| VERIFY(size_changer.size() == size); |
| |
| typedef Matrix<Scalar, 1, 1> ScalarMatrix; |
| ScalarMatrix scalar; |
| scalar.setLinSpaced(1, low, high); |
| VERIFY_IS_APPROX(scalar, ScalarMatrix::Constant(high)); |
| VERIFY_IS_APPROX(ScalarMatrix::LinSpaced(1, low, high), ScalarMatrix::Constant(high)); |
| |
| // regression test for bug 526 (linear vectorized transversal) |
| if (size > 1 && (!NumTraits<Scalar>::IsInteger)) { |
| m.tail(size - 1).setLinSpaced(low, high); |
| VERIFY_IS_APPROX(m(size - 1), high); |
| } |
| |
| // regression test for bug 1383 (LinSpaced with empty size/range) |
| { |
| Index n0 = VectorType::SizeAtCompileTime == Dynamic ? 0 : VectorType::SizeAtCompileTime; |
| low = internal::random<Scalar>(); |
| m = VectorType::LinSpaced(n0, low, low - RealScalar(1)); |
| VERIFY(m.size() == n0); |
| |
| if (VectorType::SizeAtCompileTime == Dynamic) { |
| VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, 0, Scalar(n0 - 1)).sum(), Scalar(0)); |
| VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, low, low - RealScalar(1)).sum(), Scalar(0)); |
| } |
| |
| m.setLinSpaced(n0, 0, Scalar(n0 - 1)); |
| VERIFY(m.size() == n0); |
| m.setLinSpaced(n0, low, low - RealScalar(1)); |
| VERIFY(m.size() == n0); |
| |
| // empty range only: |
| VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low), VectorType::Constant(size, low)); |
| m.setLinSpaced(size, low, low); |
| VERIFY_IS_APPROX(m, VectorType::Constant(size, low)); |
| |
| if (NumTraits<Scalar>::IsInteger) { |
| VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low + Scalar(size - 1)), |
| VectorType::LinSpaced(size, low + Scalar(size - 1), low).reverse()); |
| |
| if (VectorType::SizeAtCompileTime == Dynamic) { |
| // Check negative multiplicator path: |
| for (Index k = 1; k < 5; ++k) |
| VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low + Scalar((size - 1) * k)), |
| VectorType::LinSpaced(size, low + Scalar((size - 1) * k), low).reverse()); |
| // Check negative divisor path: |
| for (Index k = 1; k < 5; ++k) |
| VERIFY_IS_APPROX(VectorType::LinSpaced(size * k, low, low + Scalar(size - 1)), |
| VectorType::LinSpaced(size * k, low + Scalar(size - 1), low).reverse()); |
| } |
| } |
| } |
| |
| // test setUnit() |
| if (m.size() > 0) { |
| for (Index k = 0; k < 10; ++k) { |
| Index i = internal::random<Index>(0, m.size() - 1); |
| m.setUnit(i); |
| VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i)); |
| } |
| if (VectorType::SizeAtCompileTime == Dynamic) { |
| Index i = internal::random<Index>(0, 2 * m.size() - 1); |
| m.setUnit(2 * m.size(), i); |
| VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i)); |
| } |
| } |
| } |
| |
| template <typename MatrixType> |
| void testMatrixType(const MatrixType& m) { |
| using std::abs; |
| const Index rows = m.rows(); |
| const Index cols = m.cols(); |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| Scalar s1; |
| do { |
| s1 = internal::random<Scalar>(); |
| } while (abs(s1) < RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger)); |
| |
| MatrixType A; |
| A.setIdentity(rows, cols); |
| VERIFY(equalsIdentity(A)); |
| VERIFY(equalsIdentity(MatrixType::Identity(rows, cols))); |
| |
| A = MatrixType::Constant(rows, cols, s1); |
| Index i = internal::random<Index>(0, rows - 1); |
| Index j = internal::random<Index>(0, cols - 1); |
| VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1)(i, j), s1); |
| VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1).coeff(i, j), s1); |
| VERIFY_IS_APPROX(A(i, j), s1); |
| } |
| |
| template <int> |
| void bug79() { |
| // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79). |
| VERIFY((MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < |
| std::numeric_limits<double>::epsilon()); |
| } |
| |
| template <int> |
| void bug1630() { |
| Array4d x4 = Array4d::LinSpaced(0.0, 1.0); |
| Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3)); |
| VERIFY_IS_APPROX(x4.head(3), x3); |
| } |
| |
| template <int> |
| void nullary_overflow() { |
| // Check possible overflow issue |
| int n = 60000; |
| ArrayXi a1(n), a2(n), a_ref(n); |
| a1.setLinSpaced(n, 0, n - 1); |
| a2.setEqualSpaced(n, 0, 1); |
| for (int i = 0; i < n; ++i) a_ref(i) = i; |
| VERIFY_IS_APPROX(a1, a_ref); |
| VERIFY_IS_APPROX(a2, a_ref); |
| } |
| |
| template <int> |
| void nullary_internal_logic() { |
| // check some internal logic |
| VERIFY((internal::has_nullary_operator<internal::scalar_constant_op<double> >::value)); |
| VERIFY((!internal::has_unary_operator<internal::scalar_constant_op<double> >::value)); |
| VERIFY((!internal::has_binary_operator<internal::scalar_constant_op<double> >::value)); |
| VERIFY((internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret)); |
| |
| VERIFY((!internal::has_nullary_operator<internal::scalar_identity_op<double> >::value)); |
| VERIFY((!internal::has_unary_operator<internal::scalar_identity_op<double> >::value)); |
| VERIFY((internal::has_binary_operator<internal::scalar_identity_op<double> >::value)); |
| VERIFY((!internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret)); |
| |
| VERIFY((!internal::has_nullary_operator<internal::linspaced_op<float> >::value)); |
| VERIFY((internal::has_unary_operator<internal::linspaced_op<float> >::value)); |
| VERIFY((!internal::has_binary_operator<internal::linspaced_op<float> >::value)); |
| VERIFY((internal::functor_has_linear_access<internal::linspaced_op<float> >::ret)); |
| |
| // Regression unit test for a weird MSVC bug. |
| // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details. |
| // See also traits<Ref>::match. |
| { |
| MatrixXf A = MatrixXf::Random(3, 3); |
| Ref<const MatrixXf> R = 2.0 * A; |
| VERIFY_IS_APPROX(R, A + A); |
| |
| Ref<const MatrixXf> R1 = MatrixXf::Random(3, 3) + A; |
| |
| VectorXi V = VectorXi::Random(3); |
| Ref<const VectorXi> R2 = VectorXi::LinSpaced(3, 1, 3) + V; |
| VERIFY_IS_APPROX(R2, V + Vector3i(1, 2, 3)); |
| |
| VERIFY((internal::has_nullary_operator<internal::scalar_constant_op<float> >::value)); |
| VERIFY((!internal::has_unary_operator<internal::scalar_constant_op<float> >::value)); |
| VERIFY((!internal::has_binary_operator<internal::scalar_constant_op<float> >::value)); |
| VERIFY((internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret)); |
| |
| VERIFY((!internal::has_nullary_operator<internal::linspaced_op<int> >::value)); |
| VERIFY((internal::has_unary_operator<internal::linspaced_op<int> >::value)); |
| VERIFY((!internal::has_binary_operator<internal::linspaced_op<int> >::value)); |
| VERIFY((internal::functor_has_linear_access<internal::linspaced_op<int> >::ret)); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(nullary) { |
| CALL_SUBTEST_1(testMatrixType(Matrix2d())); |
| CALL_SUBTEST_2(testMatrixType(MatrixXcf(internal::random<int>(1, 300), internal::random<int>(1, 300)))); |
| CALL_SUBTEST_3(testMatrixType(MatrixXf(internal::random<int>(1, 300), internal::random<int>(1, 300)))); |
| |
| for (int i = 0; i < g_repeat * 10; i++) { |
| CALL_SUBTEST_3(testVectorType(VectorXcd(internal::random<int>(1, 30000)))); |
| CALL_SUBTEST_4(testVectorType(VectorXd(internal::random<int>(1, 30000)))); |
| CALL_SUBTEST_5(testVectorType(Vector4d())); // regression test for bug 232 |
| CALL_SUBTEST_6(testVectorType(Vector3d())); |
| CALL_SUBTEST_7(testVectorType(VectorXf(internal::random<int>(1, 30000)))); |
| CALL_SUBTEST_8(testVectorType(Vector3f())); |
| CALL_SUBTEST_8(testVectorType(Vector4f())); |
| CALL_SUBTEST_8(testVectorType(Matrix<float, 8, 1>())); |
| CALL_SUBTEST_8(testVectorType(Matrix<float, 1, 1>())); |
| |
| CALL_SUBTEST_9(testVectorType(VectorXi(internal::random<int>(1, 10)))); |
| CALL_SUBTEST_9(testVectorType(VectorXi(internal::random<int>(9, 300)))); |
| CALL_SUBTEST_9(testVectorType(Matrix<int, 1, 1>())); |
| } |
| |
| CALL_SUBTEST_6(bug79<0>()); |
| CALL_SUBTEST_6(bug1630<0>()); |
| CALL_SUBTEST_9(nullary_overflow<0>()); |
| CALL_SUBTEST_10(nullary_internal_logic<0>()); |
| } |