| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <typename MatrixType> |
| void product_extra(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, 1, Dynamic> RowVectorType; |
| typedef Matrix<Scalar, Dynamic, 1> ColVectorType; |
| typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::Flags & RowMajorBit> OtherMajorMatrixType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows), |
| square = MatrixType::Random(rows, rows), res = MatrixType::Random(rows, rows), |
| square2 = MatrixType::Random(cols, cols), res2 = MatrixType::Random(cols, cols); |
| RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); |
| ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); |
| OtherMajorMatrixType tm1 = m1; |
| |
| Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(), s3 = internal::random<Scalar>(); |
| |
| VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval()); |
| VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); |
| VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2); |
| VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2); |
| VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2, (numext::conj(s1) * m1.adjoint()).eval() * m2); |
| VERIFY_IS_APPROX(m3.noalias() = (-m1.adjoint() * s1) * (s3 * m2), (-m1.adjoint() * s1).eval() * (s3 * m2).eval()); |
| VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2); |
| VERIFY_IS_APPROX(m3.noalias() = (-m1 * s2) * s1 * m2.adjoint(), (-m1 * s2).eval() * (s1 * m2.adjoint()).eval()); |
| |
| // a very tricky case where a scale factor has to be automatically conjugated: |
| VERIFY_IS_APPROX(m1.adjoint() * (s1 * m2).conjugate(), (m1.adjoint()).eval() * ((s1 * m2).conjugate()).eval()); |
| |
| // test all possible conjugate combinations for the four matrix-vector product cases: |
| |
| VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), (-m1.conjugate() * s2).eval() * (s1 * vc2).eval()); |
| VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), (-m1 * s2).eval() * (s1 * vc2.conjugate()).eval()); |
| VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), |
| (-m1.conjugate() * s2).eval() * (s1 * vc2.conjugate()).eval()); |
| |
| VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), |
| (s1 * vc2.transpose()).eval() * (-m1.adjoint() * s2).eval()); |
| VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), |
| (s1 * vc2.adjoint()).eval() * (-m1.transpose() * s2).eval()); |
| VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), |
| (s1 * vc2.adjoint()).eval() * (-m1.adjoint() * s2).eval()); |
| |
| VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), |
| (-m1.adjoint() * s2).eval() * (s1 * v1.transpose()).eval()); |
| VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), |
| (-m1.transpose() * s2).eval() * (s1 * v1.adjoint()).eval()); |
| VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), |
| (-m1.adjoint() * s2).eval() * (s1 * v1.adjoint()).eval()); |
| |
| VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), (s1 * v1).eval() * (-m1.conjugate() * s2).eval()); |
| VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), (s1 * v1.conjugate()).eval() * (-m1 * s2).eval()); |
| VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), |
| (s1 * v1.conjugate()).eval() * (-m1.conjugate() * s2).eval()); |
| |
| VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), |
| (-m1.adjoint() * s2).eval() * (s1 * v1.adjoint()).eval()); |
| |
| // test the vector-matrix product with non aligned starts |
| Index i = internal::random<Index>(0, m1.rows() - 2); |
| Index j = internal::random<Index>(0, m1.cols() - 2); |
| Index r = internal::random<Index>(1, m1.rows() - i); |
| Index c = internal::random<Index>(1, m1.cols() - j); |
| Index i2 = internal::random<Index>(0, m1.rows() - 1); |
| Index j2 = internal::random<Index>(0, m1.cols() - 1); |
| |
| VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0, j, m1.rows(), c), |
| m1.col(j2).adjoint().eval() * m1.block(0, j, m1.rows(), c).eval()); |
| VERIFY_IS_APPROX(m1.block(i, 0, r, m1.cols()) * m1.row(i2).adjoint(), |
| m1.block(i, 0, r, m1.cols()).eval() * m1.row(i2).adjoint().eval()); |
| |
| // test negative strides |
| { |
| Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map1(&m1(rows - 1, cols - 1), rows, cols, |
| Stride<Dynamic, Dynamic>(-m1.outerStride(), -1)); |
| Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map2(&m2(rows - 1, cols - 1), rows, cols, |
| Stride<Dynamic, Dynamic>(-m2.outerStride(), -1)); |
| Map<RowVectorType, Unaligned, InnerStride<-1> > mapv1(&v1(v1.size() - 1), v1.size(), InnerStride<-1>(-1)); |
| Map<ColVectorType, Unaligned, InnerStride<-1> > mapvc2(&vc2(vc2.size() - 1), vc2.size(), InnerStride<-1>(-1)); |
| VERIFY_IS_APPROX(MatrixType(map1), m1.reverse()); |
| VERIFY_IS_APPROX(MatrixType(map2), m2.reverse()); |
| VERIFY_IS_APPROX(m3.noalias() = MatrixType(map1) * MatrixType(map2).adjoint(), |
| m1.reverse() * m2.reverse().adjoint()); |
| VERIFY_IS_APPROX(m3.noalias() = map1 * map2.adjoint(), m1.reverse() * m2.reverse().adjoint()); |
| VERIFY_IS_APPROX(map1 * vc2, m1.reverse() * vc2); |
| VERIFY_IS_APPROX(m1 * mapvc2, m1 * mapvc2); |
| VERIFY_IS_APPROX(map1.adjoint() * v1.transpose(), m1.adjoint().reverse() * v1.transpose()); |
| VERIFY_IS_APPROX(m1.adjoint() * mapv1.transpose(), m1.adjoint() * v1.reverse().transpose()); |
| } |
| |
| // regression test |
| MatrixType tmp = m1 * m1.adjoint() * s1; |
| VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1); |
| |
| // regression test for bug 1343, assignment to arrays |
| Array<Scalar, Dynamic, 1> a1 = m1 * vc2; |
| VERIFY_IS_APPROX(a1.matrix(), m1 * vc2); |
| Array<Scalar, Dynamic, 1> a2 = s1 * (m1 * vc2); |
| VERIFY_IS_APPROX(a2.matrix(), s1 * m1 * vc2); |
| Array<Scalar, 1, Dynamic> a3 = v1 * m1; |
| VERIFY_IS_APPROX(a3.matrix(), v1 * m1); |
| Array<Scalar, Dynamic, Dynamic> a4 = m1 * m2.adjoint(); |
| VERIFY_IS_APPROX(a4.matrix(), m1 * m2.adjoint()); |
| } |
| |
| // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947 |
| void mat_mat_scalar_scalar_product() { |
| Eigen::Matrix2Xd dNdxy(2, 3); |
| dNdxy << -0.5, 0.5, 0, -0.3, 0, 0.3; |
| double det = 6.0, wt = 0.5; |
| VERIFY_IS_APPROX(dNdxy.transpose() * dNdxy * det * wt, det * wt * dNdxy.transpose() * dNdxy); |
| } |
| |
| template <typename MatrixType> |
| void zero_sized_objects(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| const int PacketSize = internal::packet_traits<Scalar>::size; |
| const int PacketSize1 = PacketSize > 1 ? PacketSize - 1 : 1; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| { |
| MatrixType res, a(rows, 0), b(0, cols); |
| VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(rows, cols)); |
| VERIFY_IS_APPROX((res = a * a.transpose()), MatrixType::Zero(rows, rows)); |
| VERIFY_IS_APPROX((res = b.transpose() * b), MatrixType::Zero(cols, cols)); |
| VERIFY_IS_APPROX((res = b.transpose() * a.transpose()), MatrixType::Zero(cols, rows)); |
| } |
| |
| { |
| MatrixType res, a(rows, cols), b(cols, 0); |
| res = a * b; |
| VERIFY(res.rows() == rows && res.cols() == 0); |
| b.resize(0, rows); |
| res = b * a; |
| VERIFY(res.rows() == 0 && res.cols() == cols); |
| } |
| |
| { |
| Matrix<Scalar, PacketSize, 0> a; |
| Matrix<Scalar, 0, 1> b; |
| Matrix<Scalar, PacketSize, 1> res; |
| VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize, 1)); |
| VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize, 1)); |
| } |
| |
| { |
| Matrix<Scalar, PacketSize1, 0> a; |
| Matrix<Scalar, 0, 1> b; |
| Matrix<Scalar, PacketSize1, 1> res; |
| VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize1, 1)); |
| VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize1, 1)); |
| } |
| |
| { |
| Matrix<Scalar, PacketSize, Dynamic> a(PacketSize, 0); |
| Matrix<Scalar, Dynamic, 1> b(0, 1); |
| Matrix<Scalar, PacketSize, 1> res; |
| VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize, 1)); |
| VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize, 1)); |
| } |
| |
| { |
| Matrix<Scalar, PacketSize1, Dynamic> a(PacketSize1, 0); |
| Matrix<Scalar, Dynamic, 1> b(0, 1); |
| Matrix<Scalar, PacketSize1, 1> res; |
| VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize1, 1)); |
| VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize1, 1)); |
| } |
| } |
| |
| template <int> |
| void bug_127() { |
| // Bug 127 |
| // |
| // a product of the form lhs*rhs with |
| // |
| // lhs: |
| // rows = 1, cols = 4 |
| // RowsAtCompileTime = 1, ColsAtCompileTime = -1 |
| // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5 |
| // |
| // rhs: |
| // rows = 4, cols = 0 |
| // RowsAtCompileTime = -1, ColsAtCompileTime = -1 |
| // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1 |
| // |
| // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using |
| // the max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1. |
| |
| Matrix<float, 1, Dynamic, RowMajor, 1, 5> a(1, 4); |
| Matrix<float, Dynamic, Dynamic, ColMajor, 5, 1> b(4, 0); |
| a* b; |
| } |
| |
| template <int> |
| void bug_817() { |
| ArrayXXf B = ArrayXXf::Random(10, 10), C; |
| VectorXf x = VectorXf::Random(10); |
| C = (x.transpose() * B.matrix()); |
| B = (x.transpose() * B.matrix()); |
| VERIFY_IS_APPROX(B, C); |
| } |
| |
| template <int> |
| void unaligned_objects() { |
| // Regression test for the bug reported here: |
| // http://forum.kde.org/viewtopic.php?f=74&t=107541 |
| // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then. |
| // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases, |
| // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault. |
| for (int m = 450; m < 460; ++m) { |
| for (int n = 8; n < 12; ++n) { |
| MatrixXf M(m, n); |
| VectorXf v1(n), r1(500); |
| RowVectorXf v2(m), r2(16); |
| |
| M.setRandom(); |
| v1.setRandom(); |
| v2.setRandom(); |
| for (int o = 0; o < 4; ++o) { |
| r1.segment(o, m).noalias() = M * v1; |
| VERIFY_IS_APPROX(r1.segment(o, m), M * MatrixXf(v1)); |
| r2.segment(o, n).noalias() = v2 * M; |
| VERIFY_IS_APPROX(r2.segment(o, n), MatrixXf(v2) * M); |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| EIGEN_DONT_INLINE Index test_compute_block_size(Index m, Index n, Index k) { |
| Index mc(m), nc(n), kc(k); |
| internal::computeProductBlockingSizes<T, T>(kc, mc, nc); |
| return kc + mc + nc; |
| } |
| |
| template <typename T> |
| Index compute_block_size() { |
| Index ret = 0; |
| ret += test_compute_block_size<T>(0, 1, 1); |
| ret += test_compute_block_size<T>(1, 0, 1); |
| ret += test_compute_block_size<T>(1, 1, 0); |
| ret += test_compute_block_size<T>(0, 0, 1); |
| ret += test_compute_block_size<T>(0, 1, 0); |
| ret += test_compute_block_size<T>(1, 0, 0); |
| ret += test_compute_block_size<T>(0, 0, 0); |
| return ret; |
| } |
| |
| template <typename> |
| void aliasing_with_resize() { |
| Index m = internal::random<Index>(10, 50); |
| Index n = internal::random<Index>(10, 50); |
| MatrixXd A, B, C(m, n), D(m, m); |
| VectorXd a, b, c(n); |
| C.setRandom(); |
| D.setRandom(); |
| c.setRandom(); |
| double s = internal::random<double>(1, 10); |
| |
| A = C; |
| B = A * A.transpose(); |
| A = A * A.transpose(); |
| VERIFY_IS_APPROX(A, B); |
| |
| A = C; |
| B = (A * A.transpose()) / s; |
| A = (A * A.transpose()) / s; |
| VERIFY_IS_APPROX(A, B); |
| |
| A = C; |
| B = (A * A.transpose()) + D; |
| A = (A * A.transpose()) + D; |
| VERIFY_IS_APPROX(A, B); |
| |
| A = C; |
| B = D + (A * A.transpose()); |
| A = D + (A * A.transpose()); |
| VERIFY_IS_APPROX(A, B); |
| |
| A = C; |
| B = s * (A * A.transpose()); |
| A = s * (A * A.transpose()); |
| VERIFY_IS_APPROX(A, B); |
| |
| A = C; |
| a = c; |
| b = (A * a) / s; |
| a = (A * a) / s; |
| VERIFY_IS_APPROX(a, b); |
| } |
| |
| template <int> |
| void bug_1308() { |
| int n = 10; |
| MatrixXd r(n, n); |
| VectorXd v = VectorXd::Random(n); |
| r = v * RowVectorXd::Ones(n); |
| VERIFY_IS_APPROX(r, v.rowwise().replicate(n)); |
| r = VectorXd::Ones(n) * v.transpose(); |
| VERIFY_IS_APPROX(r, v.rowwise().replicate(n).transpose()); |
| |
| Matrix4d ones44 = Matrix4d::Ones(); |
| Matrix4d m44 = Matrix4d::Ones() * Matrix4d::Ones(); |
| VERIFY_IS_APPROX(m44, Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(m44.noalias() = ones44 * Matrix4d::Ones(), Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(m44.noalias() = ones44.transpose() * Matrix4d::Ones(), Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(m44.noalias() = Matrix4d::Ones() * ones44, Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(m44.noalias() = Matrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); |
| |
| typedef Matrix<double, 4, 4, RowMajor> RMatrix4d; |
| RMatrix4d r44 = Matrix4d::Ones() * Matrix4d::Ones(); |
| VERIFY_IS_APPROX(r44, Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(r44.noalias() = ones44 * Matrix4d::Ones(), Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(r44.noalias() = ones44.transpose() * Matrix4d::Ones(), Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(r44.noalias() = Matrix4d::Ones() * ones44, Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(r44.noalias() = Matrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(r44.noalias() = ones44 * RMatrix4d::Ones(), Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(r44.noalias() = ones44.transpose() * RMatrix4d::Ones(), Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(r44.noalias() = RMatrix4d::Ones() * ones44, Matrix4d::Constant(4)); |
| VERIFY_IS_APPROX(r44.noalias() = RMatrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); |
| |
| // RowVector4d r4; |
| m44.setOnes(); |
| r44.setZero(); |
| VERIFY_IS_APPROX(r44.noalias() += m44.row(0).transpose() * RowVector4d::Ones(), ones44); |
| r44.setZero(); |
| VERIFY_IS_APPROX(r44.noalias() += m44.col(0) * RowVector4d::Ones(), ones44); |
| r44.setZero(); |
| VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.row(0), ones44); |
| r44.setZero(); |
| VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.col(0).transpose(), ones44); |
| } |
| |
| EIGEN_DECLARE_TEST(product_extra) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(product_extra( |
| MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_2(product_extra( |
| MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_2(mat_mat_scalar_scalar_product()); |
| CALL_SUBTEST_3(product_extra(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); |
| CALL_SUBTEST_4(product_extra(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); |
| CALL_SUBTEST_1(zero_sized_objects( |
| MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| CALL_SUBTEST_5(bug_127<0>()); |
| CALL_SUBTEST_5(bug_817<0>()); |
| CALL_SUBTEST_5(bug_1308<0>()); |
| CALL_SUBTEST_6(unaligned_objects<0>()); |
| CALL_SUBTEST_7(compute_block_size<float>()); |
| CALL_SUBTEST_7(compute_block_size<double>()); |
| CALL_SUBTEST_7(compute_block_size<std::complex<double> >()); |
| CALL_SUBTEST_8(aliasing_with_resize<void>()); |
| } |