blob: 04498968d01aac9a99236fa420f15c38b62ce925 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
template <typename MatrixType>
void schur(int size = MatrixType::ColsAtCompileTime) {
typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
// Test basic functionality: T is triangular and A = U T U*
for (int counter = 0; counter < g_repeat; ++counter) {
MatrixType A = MatrixType::Random(size, size);
ComplexSchur<MatrixType> schurOfA(A);
VERIFY_IS_EQUAL(schurOfA.info(), Success);
ComplexMatrixType U = schurOfA.matrixU();
ComplexMatrixType T = schurOfA.matrixT();
for (int row = 1; row < size; ++row) {
for (int col = 0; col < row; ++col) {
VERIFY(T(row, col) == (typename MatrixType::Scalar)0);
}
}
VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
}
// Test asserts when not initialized
ComplexSchur<MatrixType> csUninitialized;
VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
VERIFY_RAISES_ASSERT(csUninitialized.info());
// Test whether compute() and constructor returns same result
MatrixType A = MatrixType::Random(size, size);
ComplexSchur<MatrixType> cs1;
cs1.compute(A);
ComplexSchur<MatrixType> cs2(A);
VERIFY_IS_EQUAL(cs1.info(), Success);
VERIFY_IS_EQUAL(cs2.info(), Success);
VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
// Test maximum number of iterations
ComplexSchur<MatrixType> cs3;
cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
VERIFY_IS_EQUAL(cs3.info(), Success);
VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
cs3.setMaxIterations(1).compute(A);
// The schur decomposition does often converge with a single iteration.
// VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);
MatrixType Atriangular = A;
Atriangular.template triangularView<StrictlyLower>().setZero();
cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
VERIFY_IS_EQUAL(cs3.info(), Success);
VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
// Test computation of only T, not U
ComplexSchur<MatrixType> csOnlyT(A, false);
VERIFY_IS_EQUAL(csOnlyT.info(), Success);
VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
if (size > 1 && size < 20) {
// Test matrix with NaN
A(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
ComplexSchur<MatrixType> csNaN(A);
VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
}
}
EIGEN_DECLARE_TEST(schur_complex) {
CALL_SUBTEST_1((schur<Matrix4cd>()));
CALL_SUBTEST_2((schur<MatrixXcf>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4))));
CALL_SUBTEST_3((schur<Matrix<std::complex<float>, 1, 1> >()));
CALL_SUBTEST_4((schur<Matrix<float, 3, 3, Eigen::RowMajor> >()));
// Test problem size constructors
CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10));
}