| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| template <typename MatrixType> |
| void schur(int size = MatrixType::ColsAtCompileTime) { |
| typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; |
| typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType; |
| |
| // Test basic functionality: T is triangular and A = U T U* |
| for (int counter = 0; counter < g_repeat; ++counter) { |
| MatrixType A = MatrixType::Random(size, size); |
| ComplexSchur<MatrixType> schurOfA(A); |
| VERIFY_IS_EQUAL(schurOfA.info(), Success); |
| ComplexMatrixType U = schurOfA.matrixU(); |
| ComplexMatrixType T = schurOfA.matrixT(); |
| for (int row = 1; row < size; ++row) { |
| for (int col = 0; col < row; ++col) { |
| VERIFY(T(row, col) == (typename MatrixType::Scalar)0); |
| } |
| } |
| VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint()); |
| } |
| |
| // Test asserts when not initialized |
| ComplexSchur<MatrixType> csUninitialized; |
| VERIFY_RAISES_ASSERT(csUninitialized.matrixT()); |
| VERIFY_RAISES_ASSERT(csUninitialized.matrixU()); |
| VERIFY_RAISES_ASSERT(csUninitialized.info()); |
| |
| // Test whether compute() and constructor returns same result |
| MatrixType A = MatrixType::Random(size, size); |
| ComplexSchur<MatrixType> cs1; |
| cs1.compute(A); |
| ComplexSchur<MatrixType> cs2(A); |
| VERIFY_IS_EQUAL(cs1.info(), Success); |
| VERIFY_IS_EQUAL(cs2.info(), Success); |
| VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT()); |
| VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU()); |
| |
| // Test maximum number of iterations |
| ComplexSchur<MatrixType> cs3; |
| cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A); |
| VERIFY_IS_EQUAL(cs3.info(), Success); |
| VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT()); |
| VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU()); |
| cs3.setMaxIterations(1).compute(A); |
| // The schur decomposition does often converge with a single iteration. |
| // VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success); |
| VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1); |
| |
| MatrixType Atriangular = A; |
| Atriangular.template triangularView<StrictlyLower>().setZero(); |
| cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations |
| VERIFY_IS_EQUAL(cs3.info(), Success); |
| VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>()); |
| VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size)); |
| |
| // Test computation of only T, not U |
| ComplexSchur<MatrixType> csOnlyT(A, false); |
| VERIFY_IS_EQUAL(csOnlyT.info(), Success); |
| VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT()); |
| VERIFY_RAISES_ASSERT(csOnlyT.matrixU()); |
| |
| if (size > 1 && size < 20) { |
| // Test matrix with NaN |
| A(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| ComplexSchur<MatrixType> csNaN(A); |
| VERIFY_IS_EQUAL(csNaN.info(), NoConvergence); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(schur_complex) { |
| CALL_SUBTEST_1((schur<Matrix4cd>())); |
| CALL_SUBTEST_2((schur<MatrixXcf>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4)))); |
| CALL_SUBTEST_3((schur<Matrix<std::complex<float>, 1, 1> >())); |
| CALL_SUBTEST_4((schur<Matrix<float, 3, 3, Eigen::RowMajor> >())); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10)); |
| } |