blob: cd758252fc906a7c59a222e21a1cdbae80252f73 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
#define EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
#include "sparse.h"
#include <Eigen/SPQRSupport>
template <typename MatrixType, typename DenseMat>
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300) {
eigen_assert(maxRows >= maxCols);
typedef typename MatrixType::Scalar Scalar;
int rows = internal::random<int>(1, maxRows);
int cols = internal::random<int>(1, rows);
double density = (std::max)(8. / (rows * cols), 0.01);
A.resize(rows, cols);
dA.resize(rows, cols);
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
A.makeCompressed();
return rows;
}
template <typename Scalar>
void test_spqr_scalar() {
typedef SparseMatrix<Scalar, ColMajor> MatrixType;
MatrixType A;
Matrix<Scalar, Dynamic, Dynamic> dA;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
DenseVector refX, x, b;
SPQR<MatrixType> solver;
generate_sparse_rectangular_problem(A, dA);
Index m = A.rows();
b = DenseVector::Random(m);
solver.compute(A);
if (solver.info() != Success) {
std::cerr << "sparse QR factorization failed\n";
exit(0);
return;
}
x = solver.solve(b);
if (solver.info() != Success) {
std::cerr << "sparse QR factorization failed\n";
exit(0);
return;
}
// Compare with a dense solver
refX = dA.colPivHouseholderQr().solve(b);
VERIFY(x.isApprox(refX, test_precision<Scalar>()));
}
EIGEN_DECLARE_TEST(spqr_support) {
CALL_SUBTEST_1(test_spqr_scalar<double>());
CALL_SUBTEST_2(test_spqr_scalar<std::complex<double> >());
}