| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/StdDeque> |
| #include <Eigen/Geometry> |
| |
| EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Vector4f) |
| |
| EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix2f) |
| EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix4f) |
| EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix4d) |
| |
| EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Affine3f) |
| EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Affine3d) |
| |
| EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Quaternionf) |
| EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Quaterniond) |
| |
| template <typename MatrixType> |
| void check_stddeque_matrix(const MatrixType& m) { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| MatrixType x = MatrixType::Random(rows, cols), y = MatrixType::Random(rows, cols); |
| std::deque<MatrixType> v(10, MatrixType::Zero(rows, cols)), w(20, y); |
| v[5] = x; |
| w[6] = v[5]; |
| VERIFY_IS_APPROX(w[6], v[5]); |
| v = w; |
| for (int i = 0; i < 20; i++) { |
| VERIFY_IS_APPROX(w[i], v[i]); |
| } |
| |
| v.resize(21); |
| v[20] = x; |
| VERIFY_IS_APPROX(v[20], x); |
| v.resize(22, y); |
| VERIFY_IS_APPROX(v[21], y); |
| v.push_back(x); |
| VERIFY_IS_APPROX(v[22], x); |
| |
| // do a lot of push_back such that the deque gets internally resized |
| // (with memory reallocation) |
| MatrixType* ref = &w[0]; |
| for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]); |
| for (unsigned int i = 23; i < v.size(); ++i) { |
| VERIFY(v[i] == w[(i - 23) % w.size()]); |
| } |
| } |
| |
| template <typename TransformType> |
| void check_stddeque_transform(const TransformType&) { |
| typedef typename TransformType::MatrixType MatrixType; |
| TransformType x(MatrixType::Random()), y(MatrixType::Random()), ti = TransformType::Identity(); |
| std::deque<TransformType> v(10, ti), w(20, y); |
| v[5] = x; |
| w[6] = v[5]; |
| VERIFY_IS_APPROX(w[6], v[5]); |
| v = w; |
| for (int i = 0; i < 20; i++) { |
| VERIFY_IS_APPROX(w[i], v[i]); |
| } |
| |
| v.resize(21, ti); |
| v[20] = x; |
| VERIFY_IS_APPROX(v[20], x); |
| v.resize(22, y); |
| VERIFY_IS_APPROX(v[21], y); |
| v.push_back(x); |
| VERIFY_IS_APPROX(v[22], x); |
| |
| // do a lot of push_back such that the deque gets internally resized |
| // (with memory reallocation) |
| TransformType* ref = &w[0]; |
| for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]); |
| for (unsigned int i = 23; i < v.size(); ++i) { |
| VERIFY(v[i].matrix() == w[(i - 23) % w.size()].matrix()); |
| } |
| } |
| |
| template <typename QuaternionType> |
| void check_stddeque_quaternion(const QuaternionType&) { |
| typedef typename QuaternionType::Coefficients Coefficients; |
| QuaternionType x(Coefficients::Random()), y(Coefficients::Random()), qi = QuaternionType::Identity(); |
| std::deque<QuaternionType> v(10, qi), w(20, y); |
| v[5] = x; |
| w[6] = v[5]; |
| VERIFY_IS_APPROX(w[6], v[5]); |
| v = w; |
| for (int i = 0; i < 20; i++) { |
| VERIFY_IS_APPROX(w[i], v[i]); |
| } |
| |
| v.resize(21, qi); |
| v[20] = x; |
| VERIFY_IS_APPROX(v[20], x); |
| v.resize(22, y); |
| VERIFY_IS_APPROX(v[21], y); |
| v.push_back(x); |
| VERIFY_IS_APPROX(v[22], x); |
| |
| // do a lot of push_back such that the deque gets internally resized |
| // (with memory reallocation) |
| QuaternionType* ref = &w[0]; |
| for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]); |
| for (unsigned int i = 23; i < v.size(); ++i) { |
| VERIFY(v[i].coeffs() == w[(i - 23) % w.size()].coeffs()); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(stddeque_overload) { |
| // some non vectorizable fixed sizes |
| CALL_SUBTEST_1(check_stddeque_matrix(Vector2f())); |
| CALL_SUBTEST_1(check_stddeque_matrix(Matrix3f())); |
| CALL_SUBTEST_2(check_stddeque_matrix(Matrix3d())); |
| |
| // some vectorizable fixed sizes |
| CALL_SUBTEST_1(check_stddeque_matrix(Matrix2f())); |
| CALL_SUBTEST_1(check_stddeque_matrix(Vector4f())); |
| CALL_SUBTEST_1(check_stddeque_matrix(Matrix4f())); |
| CALL_SUBTEST_2(check_stddeque_matrix(Matrix4d())); |
| |
| // some dynamic sizes |
| CALL_SUBTEST_3(check_stddeque_matrix(MatrixXd(1, 1))); |
| CALL_SUBTEST_3(check_stddeque_matrix(VectorXd(20))); |
| CALL_SUBTEST_3(check_stddeque_matrix(RowVectorXf(20))); |
| CALL_SUBTEST_3(check_stddeque_matrix(MatrixXcf(10, 10))); |
| |
| // some Transform |
| CALL_SUBTEST_4(check_stddeque_transform(Affine2f())); // does not need the specialization (2+1)^2 = 9 |
| CALL_SUBTEST_4(check_stddeque_transform(Affine3f())); |
| CALL_SUBTEST_4(check_stddeque_transform(Affine3d())); |
| |
| // some Quaternion |
| CALL_SUBTEST_5(check_stddeque_quaternion(Quaternionf())); |
| CALL_SUBTEST_5(check_stddeque_quaternion(Quaterniond())); |
| } |