blob: d0fb261ecc5afd77c83de6adfffc77836f0fccad [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/StdDeque>
#include <Eigen/Geometry>
EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Vector4f)
EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix2f)
EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix4f)
EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix4d)
EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Affine3f)
EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Affine3d)
EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Quaternionf)
EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Quaterniond)
template <typename MatrixType>
void check_stddeque_matrix(const MatrixType& m) {
Index rows = m.rows();
Index cols = m.cols();
MatrixType x = MatrixType::Random(rows, cols), y = MatrixType::Random(rows, cols);
std::deque<MatrixType> v(10, MatrixType::Zero(rows, cols)), w(20, y);
v[5] = x;
w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]);
v = w;
for (int i = 0; i < 20; i++) {
VERIFY_IS_APPROX(w[i], v[i]);
}
v.resize(21);
v[20] = x;
VERIFY_IS_APPROX(v[20], x);
v.resize(22, y);
VERIFY_IS_APPROX(v[21], y);
v.push_back(x);
VERIFY_IS_APPROX(v[22], x);
// do a lot of push_back such that the deque gets internally resized
// (with memory reallocation)
MatrixType* ref = &w[0];
for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]);
for (unsigned int i = 23; i < v.size(); ++i) {
VERIFY(v[i] == w[(i - 23) % w.size()]);
}
}
template <typename TransformType>
void check_stddeque_transform(const TransformType&) {
typedef typename TransformType::MatrixType MatrixType;
TransformType x(MatrixType::Random()), y(MatrixType::Random()), ti = TransformType::Identity();
std::deque<TransformType> v(10, ti), w(20, y);
v[5] = x;
w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]);
v = w;
for (int i = 0; i < 20; i++) {
VERIFY_IS_APPROX(w[i], v[i]);
}
v.resize(21, ti);
v[20] = x;
VERIFY_IS_APPROX(v[20], x);
v.resize(22, y);
VERIFY_IS_APPROX(v[21], y);
v.push_back(x);
VERIFY_IS_APPROX(v[22], x);
// do a lot of push_back such that the deque gets internally resized
// (with memory reallocation)
TransformType* ref = &w[0];
for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]);
for (unsigned int i = 23; i < v.size(); ++i) {
VERIFY(v[i].matrix() == w[(i - 23) % w.size()].matrix());
}
}
template <typename QuaternionType>
void check_stddeque_quaternion(const QuaternionType&) {
typedef typename QuaternionType::Coefficients Coefficients;
QuaternionType x(Coefficients::Random()), y(Coefficients::Random()), qi = QuaternionType::Identity();
std::deque<QuaternionType> v(10, qi), w(20, y);
v[5] = x;
w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]);
v = w;
for (int i = 0; i < 20; i++) {
VERIFY_IS_APPROX(w[i], v[i]);
}
v.resize(21, qi);
v[20] = x;
VERIFY_IS_APPROX(v[20], x);
v.resize(22, y);
VERIFY_IS_APPROX(v[21], y);
v.push_back(x);
VERIFY_IS_APPROX(v[22], x);
// do a lot of push_back such that the deque gets internally resized
// (with memory reallocation)
QuaternionType* ref = &w[0];
for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]);
for (unsigned int i = 23; i < v.size(); ++i) {
VERIFY(v[i].coeffs() == w[(i - 23) % w.size()].coeffs());
}
}
EIGEN_DECLARE_TEST(stddeque_overload) {
// some non vectorizable fixed sizes
CALL_SUBTEST_1(check_stddeque_matrix(Vector2f()));
CALL_SUBTEST_1(check_stddeque_matrix(Matrix3f()));
CALL_SUBTEST_2(check_stddeque_matrix(Matrix3d()));
// some vectorizable fixed sizes
CALL_SUBTEST_1(check_stddeque_matrix(Matrix2f()));
CALL_SUBTEST_1(check_stddeque_matrix(Vector4f()));
CALL_SUBTEST_1(check_stddeque_matrix(Matrix4f()));
CALL_SUBTEST_2(check_stddeque_matrix(Matrix4d()));
// some dynamic sizes
CALL_SUBTEST_3(check_stddeque_matrix(MatrixXd(1, 1)));
CALL_SUBTEST_3(check_stddeque_matrix(VectorXd(20)));
CALL_SUBTEST_3(check_stddeque_matrix(RowVectorXf(20)));
CALL_SUBTEST_3(check_stddeque_matrix(MatrixXcf(10, 10)));
// some Transform
CALL_SUBTEST_4(check_stddeque_transform(Affine2f())); // does not need the specialization (2+1)^2 = 9
CALL_SUBTEST_4(check_stddeque_transform(Affine3f()));
CALL_SUBTEST_4(check_stddeque_transform(Affine3d()));
// some Quaternion
CALL_SUBTEST_5(check_stddeque_quaternion(Quaternionf()));
CALL_SUBTEST_5(check_stddeque_quaternion(Quaterniond()));
}