| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ITERATIVE_SOLVER_BASE_H |
| #define EIGEN_ITERATIVE_SOLVER_BASE_H |
| |
| namespace Eigen { |
| |
| /** \ingroup IterativeLinearSolvers_Module |
| * \brief Base class for linear iterative solvers |
| * |
| * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| */ |
| template< typename Derived> |
| class IterativeSolverBase : public SparseSolverBase<Derived> |
| { |
| protected: |
| typedef SparseSolverBase<Derived> Base; |
| using Base::m_isInitialized; |
| |
| public: |
| typedef typename internal::traits<Derived>::MatrixType MatrixType; |
| typedef typename internal::traits<Derived>::Preconditioner Preconditioner; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| public: |
| |
| using Base::derived; |
| |
| /** Default constructor. */ |
| IterativeSolverBase() |
| : mp_matrix(0) |
| { |
| init(); |
| } |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| explicit IterativeSolverBase(const MatrixType& A) |
| { |
| init(); |
| compute(A); |
| } |
| |
| ~IterativeSolverBase() {} |
| |
| /** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems. |
| * |
| * Currently, this function mostly calls analyzePattern on the preconditioner. In the future |
| * we might, for instance, implement column reordering for faster matrix vector products. |
| */ |
| Derived& analyzePattern(const MatrixType& A) |
| { |
| m_preconditioner.analyzePattern(A); |
| m_isInitialized = true; |
| m_analysisIsOk = true; |
| m_info = Success; |
| return derived(); |
| } |
| |
| /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems. |
| * |
| * Currently, this function mostly calls factorize on the preconditioner. |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| Derived& factorize(const MatrixType& A) |
| { |
| eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); |
| mp_matrix = &A; |
| m_preconditioner.factorize(A); |
| m_factorizationIsOk = true; |
| m_info = Success; |
| return derived(); |
| } |
| |
| /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems. |
| * |
| * Currently, this function mostly initializes/computes the preconditioner. In the future |
| * we might, for instance, implement column reordering for faster matrix vector products. |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| Derived& compute(const MatrixType& A) |
| { |
| mp_matrix = &A; |
| m_preconditioner.compute(A); |
| m_isInitialized = true; |
| m_analysisIsOk = true; |
| m_factorizationIsOk = true; |
| m_info = Success; |
| return derived(); |
| } |
| |
| /** \internal */ |
| Index rows() const { return mp_matrix ? mp_matrix->rows() : 0; } |
| /** \internal */ |
| Index cols() const { return mp_matrix ? mp_matrix->cols() : 0; } |
| |
| /** \returns the tolerance threshold used by the stopping criteria */ |
| RealScalar tolerance() const { return m_tolerance; } |
| |
| /** Sets the tolerance threshold used by the stopping criteria */ |
| Derived& setTolerance(const RealScalar& tolerance) |
| { |
| m_tolerance = tolerance; |
| return derived(); |
| } |
| |
| /** \returns a read-write reference to the preconditioner for custom configuration. */ |
| Preconditioner& preconditioner() { return m_preconditioner; } |
| |
| /** \returns a read-only reference to the preconditioner. */ |
| const Preconditioner& preconditioner() const { return m_preconditioner; } |
| |
| /** \returns the max number of iterations */ |
| int maxIterations() const |
| { |
| return (mp_matrix && m_maxIterations<0) ? mp_matrix->cols() : m_maxIterations; |
| } |
| |
| /** Sets the max number of iterations */ |
| Derived& setMaxIterations(int maxIters) |
| { |
| m_maxIterations = maxIters; |
| return derived(); |
| } |
| |
| /** \returns the number of iterations performed during the last solve */ |
| int iterations() const |
| { |
| eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); |
| return m_iterations; |
| } |
| |
| /** \returns the tolerance error reached during the last solve */ |
| RealScalar error() const |
| { |
| eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); |
| return m_error; |
| } |
| |
| /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A |
| * and \a x0 as an initial solution. |
| * |
| * \sa solve(), compute() |
| */ |
| template<typename Rhs,typename Guess> |
| inline const SolveWithGuess<Derived, Rhs, Guess> |
| solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const |
| { |
| eigen_assert(m_isInitialized && "Solver is not initialized."); |
| eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); |
| return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0); |
| } |
| |
| /** \returns Success if the iterations converged, and NoConvergence otherwise. */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); |
| return m_info; |
| } |
| |
| /** \internal */ |
| template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex> |
| void _solve_impl(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const |
| { |
| eigen_assert(rows()==b.rows()); |
| |
| int rhsCols = b.cols(); |
| int size = b.rows(); |
| Eigen::Matrix<DestScalar,Dynamic,1> tb(size); |
| Eigen::Matrix<DestScalar,Dynamic,1> tx(size); |
| for(int k=0; k<rhsCols; ++k) |
| { |
| tb = b.col(k); |
| tx = derived().solve(tb); |
| dest.col(k) = tx.sparseView(0); |
| } |
| } |
| |
| protected: |
| void init() |
| { |
| m_isInitialized = false; |
| m_analysisIsOk = false; |
| m_factorizationIsOk = false; |
| m_maxIterations = -1; |
| m_tolerance = NumTraits<Scalar>::epsilon(); |
| } |
| const MatrixType* mp_matrix; |
| Preconditioner m_preconditioner; |
| |
| int m_maxIterations; |
| RealScalar m_tolerance; |
| |
| mutable RealScalar m_error; |
| mutable int m_iterations; |
| mutable ComputationInfo m_info; |
| mutable bool m_analysisIsOk, m_factorizationIsOk; |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ITERATIVE_SOLVER_BASE_H |