| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| // this hack is needed to make this file compiles with -pedantic (gcc) |
| #ifdef __GNUC__ |
| #define throw(X) |
| #endif |
| // discard stack allocation as that too bypasses malloc |
| #define EIGEN_STACK_ALLOCATION_LIMIT 0 |
| // any heap allocation will raise an assert |
| #define EIGEN_NO_MALLOC |
| |
| #include "main.h" |
| #include <Eigen/Cholesky> |
| #include <Eigen/Eigenvalues> |
| #include <Eigen/LU> |
| #include <Eigen/QR> |
| #include <Eigen/SVD> |
| |
| template<typename MatrixType> void nomalloc(const MatrixType& m) |
| { |
| /* this test check no dynamic memory allocation are issued with fixed-size matrices |
| */ |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Identity(rows, rows), |
| square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| |
| Scalar s1 = ei_random<Scalar>(); |
| |
| Index r = ei_random<Index>(0, rows-1), |
| c = ei_random<Index>(0, cols-1); |
| |
| VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2); |
| VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); |
| VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix()); |
| if (MatrixType::RowsAtCompileTime<EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD) { |
| // If the matrices are too large, we have better to use the optimized GEMM |
| // routines which allocates temporaries. However, on some platforms |
| // these temporaries are allocated on the stack using alloca. |
| VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); |
| } |
| } |
| |
| void ctms_decompositions() |
| { |
| const int maxSize = 16; |
| const int size = 12; |
| |
| typedef Eigen::Matrix<float, |
| Eigen::Dynamic, Eigen::Dynamic, |
| 0, |
| maxSize, maxSize> Matrix; |
| |
| typedef Eigen::Matrix<float, |
| Eigen::Dynamic, 1, |
| 0, |
| maxSize, 1> Vector; |
| |
| typedef Eigen::Matrix<std::complex<float>, |
| Eigen::Dynamic, Eigen::Dynamic, |
| 0, |
| maxSize, maxSize> ComplexMatrix; |
| |
| const Matrix A(Matrix::Random(size, size)); |
| const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); |
| // const Matrix saA = A.adjoint() * A; // NOTE: This product allocates on the stack. The two following lines are a kludgy workaround |
| Matrix saA(Matrix::Constant(size, size, 1.0)); |
| saA.diagonal().setConstant(2.0); |
| |
| // Cholesky module |
| Eigen::LLT<Matrix> LLT; LLT.compute(A); |
| Eigen::LDLT<Matrix> LDLT; LDLT.compute(A); |
| |
| // Eigenvalues module |
| Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA); |
| Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA); |
| Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; //cEigSolver.compute(complexA); // NOTE: Commented-out because makes test fail (L135 of ComplexEigenSolver.h has a product that allocates on the stack) |
| Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A); |
| Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA); |
| Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA); |
| |
| // LU module |
| Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A); |
| Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A); |
| |
| // QR module |
| Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A); |
| Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A); |
| Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A); |
| |
| // SVD module |
| Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A); |
| Eigen::SVD<Matrix> svd; svd.compute(A); |
| } |
| |
| void test_nomalloc() |
| { |
| // check that our operator new is indeed called: |
| VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3))); |
| CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2(nomalloc(Matrix4d()) ); |
| CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) ); |
| |
| // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) |
| CALL_SUBTEST_4(ctms_decompositions()); |
| |
| } |