| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "sparse.h" |
| |
| template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) |
| { |
| typedef typename SparseMatrixType::Index Index; |
| |
| const Index rows = ref.rows(); |
| const Index cols = ref.cols(); |
| typedef typename SparseMatrixType::Scalar Scalar; |
| enum { Flags = SparseMatrixType::Flags }; |
| |
| double density = std::max(8./(rows*cols), 0.01); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| Scalar eps = 1e-6; |
| |
| SparseMatrixType m(rows, cols); |
| DenseMatrix refMat = DenseMatrix::Zero(rows, cols); |
| DenseVector vec1 = DenseVector::Random(rows); |
| Scalar s1 = ei_random<Scalar>(); |
| |
| std::vector<Vector2i> zeroCoords; |
| std::vector<Vector2i> nonzeroCoords; |
| initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); |
| |
| if (zeroCoords.size()==0 || nonzeroCoords.size()==0) |
| return; |
| |
| // test coeff and coeffRef |
| for (int i=0; i<(int)zeroCoords.size(); ++i) |
| { |
| VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); |
| if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) |
| VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); |
| } |
| VERIFY_IS_APPROX(m, refMat); |
| |
| m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| |
| VERIFY_IS_APPROX(m, refMat); |
| /* |
| // test InnerIterators and Block expressions |
| for (int t=0; t<10; ++t) |
| { |
| int j = ei_random<int>(0,cols-1); |
| int i = ei_random<int>(0,rows-1); |
| int w = ei_random<int>(1,cols-j-1); |
| int h = ei_random<int>(1,rows-i-1); |
| |
| // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); |
| for(int c=0; c<w; c++) |
| { |
| VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); |
| for(int r=0; r<h; r++) |
| { |
| // VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); |
| } |
| } |
| // for(int r=0; r<h; r++) |
| // { |
| // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); |
| // for(int c=0; c<w; c++) |
| // { |
| // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); |
| // } |
| // } |
| } |
| |
| for(int c=0; c<cols; c++) |
| { |
| VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); |
| VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); |
| } |
| |
| for(int r=0; r<rows; r++) |
| { |
| VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); |
| VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); |
| } |
| */ |
| |
| // test insert (inner random) |
| { |
| DenseMatrix m1(rows,cols); |
| m1.setZero(); |
| SparseMatrixType m2(rows,cols); |
| m2.reserve(10); |
| for (int j=0; j<cols; ++j) |
| { |
| for (int k=0; k<rows/2; ++k) |
| { |
| int i = ei_random<int>(0,rows-1); |
| if (m1.coeff(i,j)==Scalar(0)) |
| m2.insert(i,j) = m1(i,j) = ei_random<Scalar>(); |
| } |
| } |
| m2.finalize(); |
| VERIFY_IS_APPROX(m2,m1); |
| } |
| |
| // test insert (fully random) |
| { |
| DenseMatrix m1(rows,cols); |
| m1.setZero(); |
| SparseMatrixType m2(rows,cols); |
| m2.reserve(10); |
| for (int k=0; k<rows*cols; ++k) |
| { |
| int i = ei_random<int>(0,rows-1); |
| int j = ei_random<int>(0,cols-1); |
| if (m1.coeff(i,j)==Scalar(0)) |
| m2.insert(i,j) = m1(i,j) = ei_random<Scalar>(); |
| } |
| m2.finalize(); |
| VERIFY_IS_APPROX(m2,m1); |
| } |
| |
| // test basic computations |
| { |
| DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); |
| SparseMatrixType m1(rows, rows); |
| SparseMatrixType m2(rows, rows); |
| SparseMatrixType m3(rows, rows); |
| SparseMatrixType m4(rows, rows); |
| initSparse<Scalar>(density, refM1, m1); |
| initSparse<Scalar>(density, refM2, m2); |
| initSparse<Scalar>(density, refM3, m3); |
| initSparse<Scalar>(density, refM4, m4); |
| |
| VERIFY_IS_APPROX(m1+m2, refM1+refM2); |
| VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); |
| VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); |
| VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); |
| |
| VERIFY_IS_APPROX(m1*=s1, refM1*=s1); |
| VERIFY_IS_APPROX(m1/=s1, refM1/=s1); |
| |
| VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); |
| VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); |
| |
| VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0))); |
| |
| refM4.setRandom(); |
| // sparse cwise* dense |
| VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); |
| // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); |
| } |
| |
| // test transpose |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| SparseMatrixType m2(rows, rows); |
| initSparse<Scalar>(density, refMat2, m2); |
| VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); |
| VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); |
| |
| VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); |
| } |
| |
| // test innerVector() |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| SparseMatrixType m2(rows, rows); |
| initSparse<Scalar>(density, refMat2, m2); |
| int j0 = ei_random(0,rows-1); |
| int j1 = ei_random(0,rows-1); |
| VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); |
| VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); |
| //m2.innerVector(j0) = 2*m2.innerVector(j1); |
| //refMat2.col(j0) = 2*refMat2.col(j1); |
| //VERIFY_IS_APPROX(m2, refMat2); |
| } |
| |
| // test innerVectors() |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| SparseMatrixType m2(rows, rows); |
| initSparse<Scalar>(density, refMat2, m2); |
| int j0 = ei_random(0,rows-2); |
| int j1 = ei_random(0,rows-2); |
| int n0 = ei_random<int>(1,rows-std::max(j0,j1)); |
| VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); |
| VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), |
| refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); |
| //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); |
| //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); |
| } |
| |
| // test prune |
| { |
| SparseMatrixType m2(rows, rows); |
| DenseMatrix refM2(rows, rows); |
| refM2.setZero(); |
| int countFalseNonZero = 0; |
| int countTrueNonZero = 0; |
| for (int j=0; j<m2.outerSize(); ++j) |
| { |
| m2.startVec(j); |
| for (int i=0; i<m2.innerSize(); ++i) |
| { |
| float x = ei_random<float>(0,1); |
| if (x<0.1) |
| { |
| // do nothing |
| } |
| else if (x<0.5) |
| { |
| countFalseNonZero++; |
| m2.insertBackByOuterInner(j,i) = Scalar(0); |
| } |
| else |
| { |
| countTrueNonZero++; |
| m2.insertBackByOuterInner(j,i) = refM2(i,j) = Scalar(1); |
| } |
| } |
| } |
| m2.finalize(); |
| VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); |
| VERIFY_IS_APPROX(m2, refM2); |
| m2.prune(1); |
| VERIFY(countTrueNonZero==m2.nonZeros()); |
| VERIFY_IS_APPROX(m2, refM2); |
| } |
| } |
| |
| void test_sparse_basic() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) ); |
| CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) ); |
| CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) ); |
| |
| CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) ); |
| } |
| } |