| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2007 Julien Pommier |
| // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) |
| // Copyright (C) 2009-2018 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* The exp and log functions of this file initially come from |
| * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ |
| */ |
| |
| namespace Eigen { |
| namespace internal { |
| |
| template<typename Packet> EIGEN_STRONG_INLINE Packet |
| pfrexp_float(const Packet& a, Packet& exponent) { |
| typedef typename unpacket_traits<Packet>::integer_packet PacketI; |
| const Packet cst_126f = pset1<Packet>(126.0f); |
| const Packet cst_half = pset1<Packet>(0.5f); |
| const Packet cst_inv_mant_mask = pset1frombits<Packet>(~0x7f800000u); |
| exponent = psub(pcast<PacketI,Packet>(pshiftright<23>(preinterpret<PacketI>(a))), cst_126f); |
| return por(pand(a, cst_inv_mant_mask), cst_half); |
| } |
| |
| template<typename Packet> EIGEN_STRONG_INLINE Packet |
| pldexp_float(Packet a, Packet exponent) |
| { |
| typedef typename unpacket_traits<Packet>::integer_packet PacketI; |
| const Packet cst_127 = pset1<Packet>(127.f); |
| // return a * 2^exponent |
| PacketI ei = pcast<Packet,PacketI>(padd(exponent, cst_127)); |
| return pmul(a, preinterpret<Packet>(pshiftleft<23>(ei))); |
| } |
| |
| // Natural logarithm |
| // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2) |
| // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can |
| // be easily approximated by a polynomial centered on m=1 for stability. |
| // TODO(gonnet): Further reduce the interval allowing for lower-degree |
| // polynomial interpolants -> ... -> profit! |
| template <typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet plog_float(const Packet _x) |
| { |
| Packet x = _x; |
| |
| const Packet cst_1 = pset1<Packet>(1.0f); |
| const Packet cst_half = pset1<Packet>(0.5f); |
| // The smallest non denormalized float number. |
| const Packet cst_min_norm_pos = pset1frombits<Packet>( 0x00800000u); |
| const Packet cst_minus_inf = pset1frombits<Packet>( 0xff800000u); |
| |
| // Polynomial coefficients. |
| const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f); |
| const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f); |
| const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f); |
| const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f); |
| const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f); |
| const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f); |
| const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f); |
| const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f); |
| const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f); |
| const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f); |
| const Packet cst_cephes_log_q1 = pset1<Packet>(-2.12194440e-4f); |
| const Packet cst_cephes_log_q2 = pset1<Packet>(0.693359375f); |
| |
| Packet invalid_mask = pcmp_lt_or_nan(x, pzero(x)); |
| Packet iszero_mask = pcmp_eq(x,pzero(x)); |
| |
| // Truncate input values to the minimum positive normal. |
| x = pmax(x, cst_min_norm_pos); |
| |
| Packet e; |
| // extract significant in the range [0.5,1) and exponent |
| x = pfrexp(x,e); |
| |
| // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) |
| // and shift by -1. The values are then centered around 0, which improves |
| // the stability of the polynomial evaluation. |
| // if( x < SQRTHF ) { |
| // e -= 1; |
| // x = x + x - 1.0; |
| // } else { x = x - 1.0; } |
| Packet mask = pcmp_lt(x, cst_cephes_SQRTHF); |
| Packet tmp = pand(x, mask); |
| x = psub(x, cst_1); |
| e = psub(e, pand(cst_1, mask)); |
| x = padd(x, tmp); |
| |
| Packet x2 = pmul(x, x); |
| Packet x3 = pmul(x2, x); |
| |
| // Evaluate the polynomial approximant of degree 8 in three parts, probably |
| // to improve instruction-level parallelism. |
| Packet y, y1, y2; |
| y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1); |
| y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4); |
| y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7); |
| y = pmadd(y, x, cst_cephes_log_p2); |
| y1 = pmadd(y1, x, cst_cephes_log_p5); |
| y2 = pmadd(y2, x, cst_cephes_log_p8); |
| y = pmadd(y, x3, y1); |
| y = pmadd(y, x3, y2); |
| y = pmul(y, x3); |
| |
| // Add the logarithm of the exponent back to the result of the interpolation. |
| y1 = pmul(e, cst_cephes_log_q1); |
| tmp = pmul(x2, cst_half); |
| y = padd(y, y1); |
| x = psub(x, tmp); |
| y2 = pmul(e, cst_cephes_log_q2); |
| x = padd(x, y); |
| x = padd(x, y2); |
| |
| // Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF. |
| return pselect(iszero_mask, cst_minus_inf, por(x, invalid_mask)); |
| } |
| |
| // Exponential function. Works by writing "x = m*log(2) + r" where |
| // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then |
| // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). |
| template <typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet pexp_float(const Packet _x) |
| { |
| const Packet cst_1 = pset1<Packet>(1.0f); |
| const Packet cst_half = pset1<Packet>(0.5f); |
| const Packet cst_exp_hi = pset1<Packet>( 88.3762626647950f); |
| const Packet cst_exp_lo = pset1<Packet>(-88.3762626647949f); |
| |
| const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f); |
| const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f); |
| const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f); |
| const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f); |
| const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f); |
| const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f); |
| const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f); |
| |
| // Clamp x. |
| Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo); |
| |
| // Express exp(x) as exp(m*ln(2) + r), start by extracting |
| // m = floor(x/ln(2) + 0.5). |
| Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half)); |
| |
| // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is |
| // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating |
| // truncation errors. |
| Packet r; |
| #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD |
| const Packet cst_nln2 = pset1<Packet>(-0.6931471805599453f); |
| r = pmadd(m, cst_nln2, x); |
| #else |
| const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693359375f); |
| const Packet cst_cephes_exp_C2 = pset1<Packet>(-2.12194440e-4f); |
| r = psub(x, pmul(m, cst_cephes_exp_C1)); |
| r = psub(r, pmul(m, cst_cephes_exp_C2)); |
| #endif |
| |
| Packet r2 = pmul(r, r); |
| |
| // TODO(gonnet): Split into odd/even polynomials and try to exploit |
| // instruction-level parallelism. |
| Packet y = cst_cephes_exp_p0; |
| y = pmadd(y, r, cst_cephes_exp_p1); |
| y = pmadd(y, r, cst_cephes_exp_p2); |
| y = pmadd(y, r, cst_cephes_exp_p3); |
| y = pmadd(y, r, cst_cephes_exp_p4); |
| y = pmadd(y, r, cst_cephes_exp_p5); |
| y = pmadd(y, r2, r); |
| y = padd(y, cst_1); |
| |
| // Return 2^m * exp(r). |
| return pmax(pldexp(y,m), _x); |
| } |
| |
| template <typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet pexp_double(const Packet _x) |
| { |
| Packet x = _x; |
| |
| const Packet cst_1 = pset1<Packet>(1.0); |
| const Packet cst_2 = pset1<Packet>(2.0); |
| const Packet cst_half = pset1<Packet>(0.5); |
| |
| const Packet cst_exp_hi = pset1<Packet>(709.437); |
| const Packet cst_exp_lo = pset1<Packet>(-709.436139303); |
| |
| const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599); |
| const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4); |
| const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2); |
| const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1); |
| const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6); |
| const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3); |
| const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1); |
| const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0); |
| const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125); |
| const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6); |
| |
| Packet tmp, fx; |
| |
| // clamp x |
| x = pmax(pmin(x, cst_exp_hi), cst_exp_lo); |
| // Express exp(x) as exp(g + n*log(2)). |
| fx = pmadd(cst_cephes_LOG2EF, x, cst_half); |
| |
| // Get the integer modulus of log(2), i.e. the "n" described above. |
| fx = pfloor(fx); |
| |
| // Get the remainder modulo log(2), i.e. the "g" described above. Subtract |
| // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last |
| // digits right. |
| tmp = pmul(fx, cst_cephes_exp_C1); |
| Packet z = pmul(fx, cst_cephes_exp_C2); |
| x = psub(x, tmp); |
| x = psub(x, z); |
| |
| Packet x2 = pmul(x, x); |
| |
| // Evaluate the numerator polynomial of the rational interpolant. |
| Packet px = cst_cephes_exp_p0; |
| px = pmadd(px, x2, cst_cephes_exp_p1); |
| px = pmadd(px, x2, cst_cephes_exp_p2); |
| px = pmul(px, x); |
| |
| // Evaluate the denominator polynomial of the rational interpolant. |
| Packet qx = cst_cephes_exp_q0; |
| qx = pmadd(qx, x2, cst_cephes_exp_q1); |
| qx = pmadd(qx, x2, cst_cephes_exp_q2); |
| qx = pmadd(qx, x2, cst_cephes_exp_q3); |
| |
| // I don't really get this bit, copied from the SSE2 routines, so... |
| // TODO(gonnet): Figure out what is going on here, perhaps find a better |
| // rational interpolant? |
| x = pdiv(px, psub(qx, px)); |
| x = pmadd(cst_2, x, cst_1); |
| |
| // Construct the result 2^n * exp(g) = e * x. The max is used to catch |
| // non-finite values in the input. |
| return pmax(pldexp(x,fx), _x); |
| } |
| |
| /* The code is the rewriting of the cephes sinf/cosf functions. |
| Precision is excellent as long as x < 8192 (I did not bother to |
| take into account the special handling they have for greater values |
| -- it does not return garbage for arguments over 8192, though, but |
| the extra precision is missing). |
| |
| Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the |
| surprising but correct result. |
| */ |
| |
| template<bool ComputeSine,typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet psincos_float(const Packet& _x) |
| { |
| typedef typename unpacket_traits<Packet>::integer_packet PacketI; |
| const Packet cst_1 = pset1<Packet>(1.0f); |
| const Packet cst_half = pset1<Packet>(0.5f); |
| |
| const PacketI csti_1 = pset1<PacketI>(1); |
| const PacketI csti_not1 = pset1<PacketI>(~1); |
| const PacketI csti_2 = pset1<PacketI>(2); |
| const PacketI csti_3 = pset1<PacketI>(3); |
| |
| const Packet cst_sign_mask = pset1frombits<Packet>(0x80000000u); |
| |
| const Packet cst_minus_cephes_DP1 = pset1<Packet>(-0.78515625f); |
| const Packet cst_minus_cephes_DP2 = pset1<Packet>(-2.4187564849853515625e-4f); |
| const Packet cst_minus_cephes_DP3 = pset1<Packet>(-3.77489497744594108e-8f); |
| const Packet cst_sincof_p0 = pset1<Packet>(-1.9515295891E-4f); |
| const Packet cst_sincof_p1 = pset1<Packet>( 8.3321608736E-3f); |
| const Packet cst_sincof_p2 = pset1<Packet>(-1.6666654611E-1f); |
| const Packet cst_coscof_p0 = pset1<Packet>( 2.443315711809948E-005f); |
| const Packet cst_coscof_p1 = pset1<Packet>(-1.388731625493765E-003f); |
| const Packet cst_coscof_p2 = pset1<Packet>( 4.166664568298827E-002f); |
| const Packet cst_cephes_FOPI = pset1<Packet>( 1.27323954473516f); // 4 / M_PI |
| |
| Packet x = pabs(_x); |
| |
| // Scale x by 4/Pi to find x's octant. |
| Packet y = pmul(x, cst_cephes_FOPI); |
| |
| // Get the octant. We'll reduce x by this number of octants or by one more than it. |
| PacketI y_int = pcast<Packet,PacketI>(y); |
| // x's from even-numbered octants will translate to octant 0: [0, +Pi/4]. |
| // x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0]. |
| // Adjustment for odd-numbered octants: octant = (octant + 1) & (~1). |
| PacketI y_int1 = pand(padd(y_int, csti_1), csti_not1); // could be pbitclear<0>(...) |
| y = pcast<PacketI,Packet>(y_int1); |
| |
| // Compute the sign to apply to the polynomial. |
| // sign = third_bit(y_int1) xor signbit(_x) |
| Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(pshiftleft<29>(y_int1))) |
| : preinterpret<Packet>(pshiftleft<29>(padd(y_int1,csti_3))); |
| sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit |
| |
| // Get the polynomial selection mask from the second bit of y_int1 |
| // We'll calculate both (sin and cos) polynomials and then select from the two. |
| Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int1, csti_2), pzero(y_int1))); |
| |
| // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4. |
| // The magic pass: "Extended precision modular arithmetic" |
| // x = ((x - y * DP1) - y * DP2) - y * DP3 |
| x = pmadd(y, cst_minus_cephes_DP1, x); |
| x = pmadd(y, cst_minus_cephes_DP2, x); |
| x = pmadd(y, cst_minus_cephes_DP3, x); |
| |
| Packet x2 = pmul(x,x); |
| |
| // Evaluate the cos(x) polynomial. (0 <= x <= Pi/4) |
| Packet y1 = cst_coscof_p0; |
| y1 = pmadd(y1, x2, cst_coscof_p1); |
| y1 = pmadd(y1, x2, cst_coscof_p2); |
| y1 = pmul(y1, x2); |
| y1 = pmul(y1, x2); |
| y1 = psub(y1, pmul(x2, cst_half)); |
| y1 = padd(y1, cst_1); |
| |
| // Evaluate the sin(x) polynomial. (Pi/4 <= x <= 0) |
| Packet y2 = cst_sincof_p0; |
| y2 = pmadd(y2, x2, cst_sincof_p1); |
| y2 = pmadd(y2, x2, cst_sincof_p2); |
| y2 = pmul(y2, x2); |
| y2 = pmadd(y2, x, x); |
| |
| // Select the correct result from the two polynoms. |
| y = ComputeSine ? pselect(poly_mask,y2,y1) |
| : pselect(poly_mask,y1,y2); |
| |
| // Update the sign |
| return pxor(y, sign_bit); |
| } |
| |
| template<typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet psin_float(const Packet& x) |
| { |
| return psincos_float<true>(x); |
| } |
| |
| template<typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet pcos_float(const Packet& x) |
| { |
| return psincos_float<false>(x); |
| } |
| |
| } // end namespace internal |
| } // end namespace Eigen |