| // This file is triangularView of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | // This file tests the basic selfadjointView API, | 
 | // the related products and decompositions are tested in specific files. | 
 |  | 
 | template<typename MatrixType> void selfadjoint(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols); | 
 |  | 
 |   m1.diagonal() = m1.diagonal().real().template cast<Scalar>(); | 
 |  | 
 |   // check selfadjoint to dense | 
 |   m3 = m1.template selfadjointView<Upper>(); | 
 |   VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Upper>()), MatrixType(m1.template triangularView<Upper>())); | 
 |   VERIFY_IS_APPROX(m3, m3.adjoint()); | 
 |  | 
 |  | 
 |   m3 = m1.template selfadjointView<Lower>(); | 
 |   VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Lower>()), MatrixType(m1.template triangularView<Lower>())); | 
 |   VERIFY_IS_APPROX(m3, m3.adjoint()); | 
 | } | 
 |  | 
 | void test_selfadjoint() | 
 | { | 
 |   for(int i = 0; i < g_repeat ; i++) | 
 |   { | 
 |     int s = ei_random<int>(1,20); EIGEN_UNUSED_VARIABLE(s); | 
 |  | 
 |     CALL_SUBTEST_1( selfadjoint(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( selfadjoint(Matrix<float, 2, 2>()) ); | 
 |     CALL_SUBTEST_3( selfadjoint(Matrix3cf()) ); | 
 |     CALL_SUBTEST_4( selfadjoint(MatrixXcd(s,s)) ); | 
 |     CALL_SUBTEST_5( selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s, s)) ); | 
 |   } | 
 | } |