blob: 576bea2958c5727be2301cbdcf4ed8296933dc5d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
// evaluator for thread pool device
#ifdef EIGEN_USE_THREADS
namespace Eigen {
namespace internal {
template<typename LhsScalar, typename LhsMapper, typename Index>
struct packLhsArg {
LhsScalar* blockA;
const LhsMapper& lhs;
const Index m_start;
const Index k_start;
const Index mc;
const Index kc;
};
template<typename LhsScalar, typename RhsScalar, typename RhsMapper, typename OutputMapper, typename Index>
struct packRhsAndKernelArg {
const std::vector<LhsScalar*>* blockAs;
RhsScalar* blockB;
const RhsMapper& rhs;
OutputMapper& output;
const Index m;
const Index k;
const Index n;
const Index mc;
const Index kc;
const Index nc;
const Index num_threads;
const Index num_blockAs;
const Index max_m;
const Index k_block_idx;
const Index m_block_idx;
const Index n_block_idx;
const Index m_blocks;
const Index n_blocks;
std::vector<Notification*>* kernel_notifications;
const std::vector<Notification*>* lhs_notifications;
const bool need_to_pack;
};
} // end namespace internal
template<typename Indices, typename LeftArgType, typename RightArgType>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > {
typedef ThreadPoolDevice Device;
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Packet Packet;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
enum {
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
};
// Most of the code is assuming that both input tensors are ColMajor. If the
// inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
// If we want to compute A * B = C, where A is LHS and B is RHS, the code
// will pretend B is LHS and A is RHS.
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
static const int LDims =
internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
static const int RDims =
internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
static const int ContractDims = internal::array_size<Indices>::value;
typedef array<Index, LDims> left_dim_mapper_t;
typedef array<Index, RDims> right_dim_mapper_t;
typedef array<Index, ContractDims> contract_t;
typedef array<Index, max_n_1<LDims - ContractDims>::size> left_nocontract_t;
typedef array<Index, max_n_1<RDims - ContractDims>::size> right_nocontract_t;
static const int NumDims = max_n_1<LDims + RDims - 2 * ContractDims>::size;
typedef DSizes<Index, NumDims> Dimensions;
// typedefs needed in evalTo
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
TensorEvaluator(const XprType& op, const Device& device) :
Base(op, device) {}
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
void evalProduct(Scalar* buffer) const {
if (this->m_j_size == 1) {
this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
return;
}
evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
}
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
void evalGemm(Scalar* buffer) const {
// columns in left side, rows in right side
const Index k = this->m_k_size;
// rows in left side
const Index m = this->m_i_size;
// columns in right side
const Index n = this->m_j_size;
// zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
const int lhs_packet_size = internal::packet_traits<LhsScalar>::size;
const int rhs_packet_size = internal::packet_traits<RhsScalar>::size;
typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
LeftEvaluator, left_nocontract_t,
contract_t, lhs_packet_size,
lhs_inner_dim_contiguous,
false, Unaligned> LhsMapper;
typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
RightEvaluator, right_nocontract_t,
contract_t, rhs_packet_size,
rhs_inner_dim_contiguous,
rhs_inner_dim_reordered, Unaligned> RhsMapper;
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
// TODO: packing could be faster sometimes if we supported row major tensor mappers
typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
Traits::LhsProgress, ColMajor> LhsPacker;
typedef internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker;
// TODO: replace false, false with conjugate values?
typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
Traits::mr, Traits::nr, false, false> GebpKernel;
typedef internal::packLhsArg<LhsScalar, LhsMapper, Index> packLArg;
typedef internal::packRhsAndKernelArg<LhsScalar, RhsScalar, RhsMapper, OutputMapper, Index> packRKArg;
// initialize data mappers
LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
this->m_left_contracting_strides, this->m_k_strides);
RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
this->m_right_contracting_strides, this->m_k_strides);
OutputMapper output(buffer, m);
// compute block sizes (which depend on number of threads)
const Index num_threads = this->m_device.numThreads();
Index mc = m;
Index nc = n;
Index kc = k;
internal::computeProductBlockingSizes<LhsScalar,RhsScalar,1>(kc, mc, nc, num_threads);
eigen_assert(mc <= m);
eigen_assert(nc <= n);
eigen_assert(kc <= k);
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
const Index k_blocks = CEIL_DIV(k, kc);
const Index n_blocks = CEIL_DIV(n, nc);
const Index m_blocks = CEIL_DIV(m, mc);
const Index sizeA = mc * kc;
const Index sizeB = kc * nc;
/* cout << "m: " << m << " n: " << n << " k: " << k << endl;
cout << "mc: " << mc << " nc: " << nc << " kc: " << kc << endl;
cout << "m_blocks: " << m_blocks << " n_blocks: " << n_blocks << " k_blocks: " << k_blocks << endl;
cout << "num threads: " << num_threads << endl;
*/
// note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB
// aren't 16 byte aligned segfaults will happen due to SIMD instructions
// note: You can get away with allocating just a single blockA and offsets and meet the
// the alignment requirements with the assumption that
// (Traits::mr * sizeof(ResScalar)) % 16 == 0
const Index numBlockAs = numext::mini(num_threads, m_blocks);
std::vector<LhsScalar *> blockAs;
blockAs.reserve(num_threads);
for (int i = 0; i < num_threads; i++) {
blockAs.push_back(static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar))));
}
// To circumvent alignment issues, I'm just going to separately allocate the memory for each thread
// TODO: is this too much memory to allocate? This simplifies coding a lot, but is wasteful.
// Other options: (1) reuse memory when a thread finishes. con: tricky
// (2) allocate block B memory in each thread. con: overhead
std::vector<RhsScalar *> blockBs;
blockBs.reserve(n_blocks);
for (int i = 0; i < n_blocks; i++) {
blockBs.push_back(static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar))));
}
// lhs_notifications starts with all null Notifications
std::vector<Notification*> lhs_notifications(num_threads, nullptr);
// this should really be numBlockAs * n_blocks;
const Index num_kernel_notifications = num_threads * n_blocks;
std::vector<Notification*> kernel_notifications(num_kernel_notifications,
nullptr);
for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) {
const Index k_start = k_block_idx * kc;
// make sure we don't overshoot right edge of left matrix
const Index actual_kc = numext::mini(k_start + kc, k) - k_start;
for (Index m_block_idx = 0; m_block_idx < m_blocks; m_block_idx += numBlockAs) {
const Index num_blocks = numext::mini(m_blocks-m_block_idx, numBlockAs);
for (Index mt_block_idx = m_block_idx; mt_block_idx < m_block_idx+num_blocks; mt_block_idx++) {
const Index m_start = mt_block_idx * mc;
const Index actual_mc = numext::mini(m_start + mc, m) - m_start;
eigen_assert(actual_mc > 0);
Index blockAId = (k_block_idx * m_blocks + mt_block_idx) % num_threads;
for (int i = 0; i < n_blocks; ++i) {
Index notification_id = (blockAId * n_blocks + i);
// Wait for any current kernels using this slot to complete
// before using it.
if (kernel_notifications[notification_id]) {
wait_until_ready(kernel_notifications[notification_id]);
delete kernel_notifications[notification_id];
}
kernel_notifications[notification_id] = new Notification();
}
const packLArg arg = {
blockAs[blockAId], // blockA
lhs, // lhs
m_start, // m
k_start, // k
actual_mc, // mc
actual_kc, // kc
};
// Delete any existing notification since we may be
// replacing it. The algorithm should ensure that there are
// no existing waiters on this notification.
delete lhs_notifications[blockAId];
lhs_notifications[blockAId] =
this->m_device.enqueue(&Self::packLhs<packLArg, LhsPacker>, arg);
}
// now start kernels.
const Index m_base_start = m_block_idx * mc;
const bool need_to_pack = m_block_idx == 0;
for (Index n_block_idx = 0; n_block_idx < n_blocks; n_block_idx++) {
const Index n_start = n_block_idx * nc;
const Index actual_nc = numext::mini(n_start + nc, n) - n_start;
// first make sure the previous kernels are all done before overwriting rhs. Also wait if
// we're going to start new k. In both cases need_to_pack is true.
if (need_to_pack) {
for (Index i = num_blocks; i < num_threads; ++i) {
Index blockAId = (k_block_idx * m_blocks + i + m_block_idx) % num_threads;
Index future_id = (blockAId * n_blocks + n_block_idx);
wait_until_ready(kernel_notifications[future_id]);
}
}
packRKArg arg = {
&blockAs, // blockA
blockBs[n_block_idx], // blockB
rhs, // rhs
output, // output
m_base_start, // m
k_start, // k
n_start, // n
mc, // mc
actual_kc, // kc
actual_nc, // nc
num_threads,
numBlockAs,
m,
k_block_idx,
m_block_idx,
n_block_idx, // n_block_idx
m_blocks, // m_blocks
n_blocks, // n_blocks
&kernel_notifications, // kernel notifications
&lhs_notifications, // lhs notifications
need_to_pack, // need_to_pack
};
// We asynchronously kick off this function, which ends up
// notifying the appropriate kernel_notifications objects,
// which this thread waits on before exiting.
this->m_device.enqueueNoNotification(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
}
}
}
// Make sure all the kernels are done.
for (size_t i = 0; i < kernel_notifications.size(); ++i) {
wait_until_ready(kernel_notifications[i]);
delete kernel_notifications[i];
}
// No need to wait for lhs notifications since they should have
// already been waited on. Just clean them up.
for (size_t i = 0; i < lhs_notifications.size(); ++i) {
delete lhs_notifications[i];
}
// deallocate all of the memory for both A and B's
for (size_t i = 0; i < blockAs.size(); i++) {
this->m_device.deallocate(blockAs[i]);
}
for (size_t i = 0; i < blockBs.size(); i++) {
this->m_device.deallocate(blockBs[i]);
}
#undef CEIL_DIV
}
/*
* Packs a LHS block of size (mt, kc) starting at lhs(m, k). Before packing
* the LHS block, check that all of the kernels that worked on the same
* mt_block_idx in the previous m_block are done.
*/
template <typename packLArg, typename LhsPacker>
static void packLhs(const packLArg arg) {
// perform actual packing
LhsPacker pack_lhs;
pack_lhs(arg.blockA, arg.lhs.getSubMapper(arg.m_start, arg.k_start), arg.kc, arg.mc);
}
/*
* Packs a RHS block of size (kc, nc) starting at (k, n) after checking that
* all kernels in the previous block are done.
* Then for each LHS future, we wait on the future and then call GEBP
* on the area packed by the future (which starts at
* blockA + future_idx * mt * kc) on the LHS and with the full packed
* RHS block.
* The output of this GEBP is written to output(m + i * mt, n).
*/
template <typename packRKArg, typename RhsPacker, typename GebpKernel>
static void packRhsAndKernel(packRKArg arg) {
if (arg.need_to_pack) {
RhsPacker pack_rhs;
pack_rhs(arg.blockB, arg.rhs.getSubMapper(arg.k, arg.n), arg.kc, arg.nc);
}
GebpKernel gebp;
for (Index mt_block_idx = 0; mt_block_idx < arg.num_blockAs; mt_block_idx++) {
const Index m_base_start = arg.m + arg.mc*mt_block_idx;
if (m_base_start < arg.max_m) {
Index blockAId = (arg.k_block_idx * arg.m_blocks + mt_block_idx + arg.m_block_idx) % arg.num_threads;
wait_until_ready((*arg.lhs_notifications)[blockAId]);
const Index actual_mc = numext::mini(m_base_start + arg.mc, arg.max_m) - m_base_start;
gebp(arg.output.getSubMapper(m_base_start, arg.n),
(*arg.blockAs)[blockAId], arg.blockB,
actual_mc, arg.kc, arg.nc, 1.0, -1, -1, 0, 0);
// Notify that the kernel is done.
const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx;
(*arg.kernel_notifications)[set_idx]->Notify();
}
}
}
};
} // end namespace Eigen
#endif // EIGEN_USE_THREADS
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H