| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "common.h" |
| |
| /** ZHEMV performs the matrix-vector operation |
| * |
| * y := alpha*A*x + beta*y, |
| * |
| * where alpha and beta are scalars, x and y are n element vectors and |
| * A is an n by n hermitian matrix. |
| */ |
| int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) |
| { |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| Scalar* y = reinterpret_cast<Scalar*>(py); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| // check arguments |
| int info = 0; |
| if(UPLO(*uplo)==INVALID) info = 1; |
| else if(*n<0) info = 2; |
| else if(*lda<std::max(1,*n)) info = 5; |
| else if(*incx==0) info = 7; |
| else if(*incy==0) info = 10; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6); |
| |
| if(*n==0) |
| return 1; |
| |
| Scalar* actual_x = get_compact_vector(x,*n,*incx); |
| Scalar* actual_y = get_compact_vector(y,*n,*incy); |
| |
| if(beta!=Scalar(1)) |
| { |
| if(beta==Scalar(0)) vector(actual_y, *n).setZero(); |
| else vector(actual_y, *n) *= beta; |
| } |
| |
| if(alpha!=Scalar(0)) |
| { |
| // TODO performs a direct call to the underlying implementation function |
| if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n)); |
| else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n)); |
| } |
| |
| if(actual_x!=x) delete[] actual_x; |
| if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); |
| |
| return 1; |
| } |
| |
| /** ZHBMV performs the matrix-vector operation |
| * |
| * y := alpha*A*x + beta*y, |
| * |
| * where alpha and beta are scalars, x and y are n element vectors and |
| * A is an n by n hermitian band matrix, with k super-diagonals. |
| */ |
| // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, |
| // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) |
| // { |
| // return 1; |
| // } |
| |
| /** ZHPMV performs the matrix-vector operation |
| * |
| * y := alpha*A*x + beta*y, |
| * |
| * where alpha and beta are scalars, x and y are n element vectors and |
| * A is an n by n hermitian matrix, supplied in packed form. |
| */ |
| // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) |
| // { |
| // return 1; |
| // } |
| |
| /** ZHPR performs the hermitian rank 1 operation |
| * |
| * A := alpha*x*conjg( x' ) + A, |
| * |
| * where alpha is a real scalar, x is an n element vector and A is an |
| * n by n hermitian matrix, supplied in packed form. |
| */ |
| // int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap) |
| // { |
| // return 1; |
| // } |
| |
| /** ZHPR2 performs the hermitian rank 2 operation |
| * |
| * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, |
| * |
| * where alpha is a scalar, x and y are n element vectors and A is an |
| * n by n hermitian matrix, supplied in packed form. |
| */ |
| // int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap) |
| // { |
| // return 1; |
| // } |
| |
| /** ZHER performs the hermitian rank 1 operation |
| * |
| * A := alpha*x*conjg( x' ) + A, |
| * |
| * where alpha is a real scalar, x is an n element vector and A is an |
| * n by n hermitian matrix. |
| */ |
| int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) |
| { |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha); |
| |
| int info = 0; |
| if(UPLO(*uplo)==INVALID) info = 1; |
| else if(*n<0) info = 2; |
| else if(*incx==0) info = 5; |
| else if(*lda<std::max(1,*n)) info = 7; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6); |
| |
| if(alpha==RealScalar(0)) |
| return 1; |
| |
| Scalar* x_cpy = get_compact_vector(x, *n, *incx); |
| |
| // TODO perform direct calls to underlying implementation |
| // if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha); |
| // else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha); |
| |
| if(UPLO(*uplo)==LO) |
| for(int j=0;j<*n;++j) |
| matrix(a,*n,*n,*lda).col(j).tail(*n-j) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy+j,*n-j); |
| else |
| for(int j=0;j<*n;++j) |
| matrix(a,*n,*n,*lda).col(j).head(j+1) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy,j+1); |
| |
| matrix(a,*n,*n,*lda).diagonal().imag().setZero(); |
| |
| if(x_cpy!=x) delete[] x_cpy; |
| |
| return 1; |
| } |
| |
| /** ZHER2 performs the hermitian rank 2 operation |
| * |
| * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, |
| * |
| * where alpha is a scalar, x and y are n element vectors and A is an n |
| * by n hermitian matrix. |
| */ |
| int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) |
| { |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| Scalar* y = reinterpret_cast<Scalar*>(py); |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| |
| int info = 0; |
| if(UPLO(*uplo)==INVALID) info = 1; |
| else if(*n<0) info = 2; |
| else if(*incx==0) info = 5; |
| else if(*incy==0) info = 7; |
| else if(*lda<std::max(1,*n)) info = 9; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6); |
| |
| if(alpha==Scalar(0)) |
| return 1; |
| |
| Scalar* x_cpy = get_compact_vector(x, *n, *incx); |
| Scalar* y_cpy = get_compact_vector(y, *n, *incy); |
| |
| // TODO perform direct calls to underlying implementation |
| if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha); |
| else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha); |
| |
| matrix(a,*n,*n,*lda).diagonal().imag().setZero(); |
| |
| if(x_cpy!=x) delete[] x_cpy; |
| if(y_cpy!=y) delete[] y_cpy; |
| |
| return 1; |
| } |
| |
| /** ZGERU performs the rank 1 operation |
| * |
| * A := alpha*x*y' + A, |
| * |
| * where alpha is a scalar, x is an m element vector, y is an n element |
| * vector and A is an m by n matrix. |
| */ |
| int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) |
| { |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| Scalar* y = reinterpret_cast<Scalar*>(py); |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| |
| int info = 0; |
| if(*m<0) info = 1; |
| else if(*n<0) info = 2; |
| else if(*incx==0) info = 5; |
| else if(*incy==0) info = 7; |
| else if(*lda<std::max(1,*m)) info = 9; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6); |
| |
| if(alpha==Scalar(0)) |
| return 1; |
| |
| Scalar* x_cpy = get_compact_vector(x,*m,*incx); |
| Scalar* y_cpy = get_compact_vector(y,*n,*incy); |
| |
| // TODO perform direct calls to underlying implementation |
| matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).transpose(); |
| |
| if(x_cpy!=x) delete[] x_cpy; |
| if(y_cpy!=y) delete[] y_cpy; |
| |
| return 1; |
| } |
| |
| /** ZGERC performs the rank 1 operation |
| * |
| * A := alpha*x*conjg( y' ) + A, |
| * |
| * where alpha is a scalar, x is an m element vector, y is an n element |
| * vector and A is an m by n matrix. |
| */ |
| int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) |
| { |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| Scalar* y = reinterpret_cast<Scalar*>(py); |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| |
| int info = 0; |
| if(*m<0) info = 1; |
| else if(*n<0) info = 2; |
| else if(*incx==0) info = 5; |
| else if(*incy==0) info = 7; |
| else if(*lda<std::max(1,*m)) info = 9; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6); |
| |
| if(alpha==Scalar(0)) |
| return 1; |
| |
| Scalar* x_cpy = get_compact_vector(x,*m,*incx); |
| Scalar* y_cpy = get_compact_vector(y,*n,*incy); |
| |
| // TODO perform direct calls to underlying implementation |
| matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint(); |
| |
| if(x_cpy!=x) delete[] x_cpy; |
| if(y_cpy!=y) delete[] y_cpy; |
| |
| return 1; |
| } |