|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_LLT_H | 
|  | #define EIGEN_LLT_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal{ | 
|  |  | 
|  | template<typename MatrixType_, int UpLo_> struct traits<LLT<MatrixType_, UpLo_> > | 
|  | : traits<MatrixType_> | 
|  | { | 
|  | typedef MatrixXpr XprKind; | 
|  | typedef SolverStorage StorageKind; | 
|  | typedef int StorageIndex; | 
|  | enum { Flags = 0 }; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType, int UpLo> struct LLT_Traits; | 
|  | } | 
|  |  | 
|  | /** \ingroup Cholesky_Module | 
|  | * | 
|  | * \class LLT | 
|  | * | 
|  | * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the LL^T Cholesky decomposition | 
|  | * \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper. | 
|  | *               The other triangular part won't be read. | 
|  | * | 
|  | * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite | 
|  | * matrix A such that A = LL^* = U^*U, where L is lower triangular. | 
|  | * | 
|  | * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b, | 
|  | * for that purpose, we recommend the Cholesky decomposition without square root which is more stable | 
|  | * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other | 
|  | * situations like generalised eigen problems with hermitian matrices. | 
|  | * | 
|  | * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, | 
|  | * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations | 
|  | * has a solution. | 
|  | * | 
|  | * Example: \include LLT_example.cpp | 
|  | * Output: \verbinclude LLT_example.out | 
|  | * | 
|  | * \b Performance: for best performance, it is recommended to use a column-major storage format | 
|  | * with the Lower triangular part (the default), or, equivalently, a row-major storage format | 
|  | * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization | 
|  | * step, and rank-updates can be up to 3 times slower. | 
|  | * | 
|  | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|  | * | 
|  | * Note that during the decomposition, only the lower (or upper, as defined by UpLo_) triangular part of A is considered. | 
|  | * Therefore, the strict lower part does not have to store correct values. | 
|  | * | 
|  | * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT | 
|  | */ | 
|  | template<typename MatrixType_, int UpLo_> class LLT | 
|  | : public SolverBase<LLT<MatrixType_, UpLo_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef SolverBase<LLT> Base; | 
|  | friend class SolverBase<LLT>; | 
|  |  | 
|  | EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) | 
|  | enum { | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | PacketSize = internal::packet_traits<Scalar>::size, | 
|  | AlignmentMask = int(PacketSize)-1, | 
|  | UpLo = UpLo_ | 
|  | }; | 
|  |  | 
|  | typedef internal::LLT_Traits<MatrixType,UpLo> Traits; | 
|  |  | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via LLT::compute(const MatrixType&). | 
|  | */ | 
|  | LLT() : m_matrix(), m_isInitialized(false) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa LLT() | 
|  | */ | 
|  | explicit LLT(Index size) : m_matrix(size, size), | 
|  | m_isInitialized(false) {} | 
|  |  | 
|  | template<typename InputType> | 
|  | explicit LLT(const EigenBase<InputType>& matrix) | 
|  | : m_matrix(matrix.rows(), matrix.cols()), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \brief Constructs a LLT factorization from a given matrix | 
|  | * | 
|  | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when | 
|  | * \c MatrixType is a Eigen::Ref. | 
|  | * | 
|  | * \sa LLT(const EigenBase&) | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit LLT(EigenBase<InputType>& matrix) | 
|  | : m_matrix(matrix.derived()), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns a view of the upper triangular matrix U */ | 
|  | inline typename Traits::MatrixU matrixU() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return Traits::getU(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns a view of the lower triangular matrix L */ | 
|  | inline typename Traits::MatrixL matrixL() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return Traits::getL(m_matrix); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. | 
|  | * | 
|  | * Since this LLT class assumes anyway that the matrix A is invertible, the solution | 
|  | * theoretically exists and is unique regardless of b. | 
|  | * | 
|  | * Example: \include LLT_solve.cpp | 
|  | * Output: \verbinclude LLT_solve.out | 
|  | * | 
|  | * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const Solve<LLT, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const; | 
|  | #endif | 
|  |  | 
|  | template<typename Derived> | 
|  | void solveInPlace(const MatrixBase<Derived> &bAndX) const; | 
|  |  | 
|  | template<typename InputType> | 
|  | LLT& compute(const EigenBase<InputType>& matrix); | 
|  |  | 
|  | /** \returns an estimate of the reciprocal condition number of the matrix of | 
|  | *  which \c *this is the Cholesky decomposition. | 
|  | */ | 
|  | RealScalar rcond() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); | 
|  | return internal::rcond_estimate_helper(m_l1_norm, *this); | 
|  | } | 
|  |  | 
|  | /** \returns the LLT decomposition matrix | 
|  | * | 
|  | * TODO: document the storage layout | 
|  | */ | 
|  | inline const MatrixType& matrixLLT() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return m_matrix; | 
|  | } | 
|  |  | 
|  | MatrixType reconstructedMatrix() const; | 
|  |  | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the matrix.appears not to be positive definite. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. | 
|  | * | 
|  | * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: | 
|  | * \code x = decomposition.adjoint().solve(b) \endcode | 
|  | */ | 
|  | const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; } | 
|  |  | 
|  | inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } | 
|  | inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } | 
|  |  | 
|  | template<typename VectorType> | 
|  | LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename RhsType, typename DstType> | 
|  | void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
|  |  | 
|  | template<bool Conjugate, typename RhsType, typename DstType> | 
|  | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  |  | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  |  | 
|  | /** \internal | 
|  | * Used to compute and store L | 
|  | * The strict upper part is not used and even not initialized. | 
|  | */ | 
|  | MatrixType m_matrix; | 
|  | RealScalar m_l1_norm; | 
|  | bool m_isInitialized; | 
|  | ComputationInfo m_info; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename Scalar, int UpLo> struct llt_inplace; | 
|  |  | 
|  | template<typename MatrixType, typename VectorType> | 
|  | static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) | 
|  | { | 
|  | using std::sqrt; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::ColXpr ColXpr; | 
|  | typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; | 
|  | typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; | 
|  | typedef Matrix<Scalar,Dynamic,1> TempVectorType; | 
|  | typedef typename TempVectorType::SegmentReturnType TempVecSegment; | 
|  |  | 
|  | Index n = mat.cols(); | 
|  | eigen_assert(mat.rows()==n && vec.size()==n); | 
|  |  | 
|  | TempVectorType temp; | 
|  |  | 
|  | if(sigma>0) | 
|  | { | 
|  | // This version is based on Givens rotations. | 
|  | // It is faster than the other one below, but only works for updates, | 
|  | // i.e., for sigma > 0 | 
|  | temp = sqrt(sigma) * vec; | 
|  |  | 
|  | for(Index i=0; i<n; ++i) | 
|  | { | 
|  | JacobiRotation<Scalar> g; | 
|  | g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); | 
|  |  | 
|  | Index rs = n-i-1; | 
|  | if(rs>0) | 
|  | { | 
|  | ColXprSegment x(mat.col(i).tail(rs)); | 
|  | TempVecSegment y(temp.tail(rs)); | 
|  | apply_rotation_in_the_plane(x, y, g); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | temp = vec; | 
|  | RealScalar beta = 1; | 
|  | for(Index j=0; j<n; ++j) | 
|  | { | 
|  | RealScalar Ljj = numext::real(mat.coeff(j,j)); | 
|  | RealScalar dj = numext::abs2(Ljj); | 
|  | Scalar wj = temp.coeff(j); | 
|  | RealScalar swj2 = sigma*numext::abs2(wj); | 
|  | RealScalar gamma = dj*beta + swj2; | 
|  |  | 
|  | RealScalar x = dj + swj2/beta; | 
|  | if (x<=RealScalar(0)) | 
|  | return j; | 
|  | RealScalar nLjj = sqrt(x); | 
|  | mat.coeffRef(j,j) = nLjj; | 
|  | beta += swj2/dj; | 
|  |  | 
|  | // Update the terms of L | 
|  | Index rs = n-j-1; | 
|  | if(rs) | 
|  | { | 
|  | temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); | 
|  | if(gamma != 0) | 
|  | mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); | 
|  | } | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | template<typename Scalar> struct llt_inplace<Scalar, Lower> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | template<typename MatrixType> | 
|  | static Index unblocked(MatrixType& mat) | 
|  | { | 
|  | using std::sqrt; | 
|  |  | 
|  | eigen_assert(mat.rows()==mat.cols()); | 
|  | const Index size = mat.rows(); | 
|  | for(Index k = 0; k < size; ++k) | 
|  | { | 
|  | Index rs = size-k-1; // remaining size | 
|  |  | 
|  | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); | 
|  | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); | 
|  | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); | 
|  |  | 
|  | RealScalar x = numext::real(mat.coeff(k,k)); | 
|  | if (k>0) x -= A10.squaredNorm(); | 
|  | if (x<=RealScalar(0)) | 
|  | return k; | 
|  | mat.coeffRef(k,k) = x = sqrt(x); | 
|  | if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); | 
|  | if (rs>0) A21 /= x; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | static Index blocked(MatrixType& m) | 
|  | { | 
|  | eigen_assert(m.rows()==m.cols()); | 
|  | Index size = m.rows(); | 
|  | if(size<32) | 
|  | return unblocked(m); | 
|  |  | 
|  | Index blockSize = size/8; | 
|  | blockSize = (blockSize/16)*16; | 
|  | blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); | 
|  |  | 
|  | for (Index k=0; k<size; k+=blockSize) | 
|  | { | 
|  | // partition the matrix: | 
|  | //       A00 |  -  |  - | 
|  | // lu  = A10 | A11 |  - | 
|  | //       A20 | A21 | A22 | 
|  | Index bs = (std::min)(blockSize, size-k); | 
|  | Index rs = size - k - bs; | 
|  | Block<MatrixType,Dynamic,Dynamic> A11(m,k,   k,   bs,bs); | 
|  | Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k,   rs,bs); | 
|  | Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); | 
|  |  | 
|  | Index ret; | 
|  | if((ret=unblocked(A11))>=0) return k+ret; | 
|  | if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); | 
|  | if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType, typename VectorType> | 
|  | static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) | 
|  | { | 
|  | return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct llt_inplace<Scalar, Upper> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return llt_inplace<Scalar, Lower>::unblocked(matt); | 
|  | } | 
|  | template<typename MatrixType> | 
|  | static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return llt_inplace<Scalar, Lower>::blocked(matt); | 
|  | } | 
|  | template<typename MatrixType, typename VectorType> | 
|  | static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> | 
|  | { | 
|  | typedef const TriangularView<const MatrixType, Lower> MatrixL; | 
|  | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; | 
|  | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } | 
|  | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } | 
|  | static bool inplace_decomposition(MatrixType& m) | 
|  | { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> | 
|  | { | 
|  | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; | 
|  | typedef const TriangularView<const MatrixType, Upper> MatrixU; | 
|  | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } | 
|  | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } | 
|  | static bool inplace_decomposition(MatrixType& m) | 
|  | { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix | 
|  | * | 
|  | * \returns a reference to *this | 
|  | * | 
|  | * Example: \include TutorialLinAlgComputeTwice.cpp | 
|  | * Output: \verbinclude TutorialLinAlgComputeTwice.out | 
|  | */ | 
|  | template<typename MatrixType, int UpLo_> | 
|  | template<typename InputType> | 
|  | LLT<MatrixType,UpLo_>& LLT<MatrixType,UpLo_>::compute(const EigenBase<InputType>& a) | 
|  | { | 
|  | eigen_assert(a.rows()==a.cols()); | 
|  | const Index size = a.rows(); | 
|  | m_matrix.resize(size, size); | 
|  | if (!internal::is_same_dense(m_matrix, a.derived())) | 
|  | m_matrix = a.derived(); | 
|  |  | 
|  | // Compute matrix L1 norm = max abs column sum. | 
|  | m_l1_norm = RealScalar(0); | 
|  | // TODO move this code to SelfAdjointView | 
|  | for (Index col = 0; col < size; ++col) { | 
|  | RealScalar abs_col_sum; | 
|  | if (UpLo_ == Lower) | 
|  | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | 
|  | else | 
|  | abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); | 
|  | if (abs_col_sum > m_l1_norm) | 
|  | m_l1_norm = abs_col_sum; | 
|  | } | 
|  |  | 
|  | m_isInitialized = true; | 
|  | bool ok = Traits::inplace_decomposition(m_matrix); | 
|  | m_info = ok ? Success : NumericalIssue; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Performs a rank one update (or dowdate) of the current decomposition. | 
|  | * If A = LL^* before the rank one update, | 
|  | * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector | 
|  | * of same dimension. | 
|  | */ | 
|  | template<typename MatrixType_, int UpLo_> | 
|  | template<typename VectorType> | 
|  | LLT<MatrixType_,UpLo_> & LLT<MatrixType_,UpLo_>::rankUpdate(const VectorType& v, const RealScalar& sigma) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); | 
|  | eigen_assert(v.size()==m_matrix.cols()); | 
|  | eigen_assert(m_isInitialized); | 
|  | if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) | 
|  | m_info = NumericalIssue; | 
|  | else | 
|  | m_info = Success; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename MatrixType_,int UpLo_> | 
|  | template<typename RhsType, typename DstType> | 
|  | void LLT<MatrixType_,UpLo_>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | _solve_impl_transposed<true>(rhs, dst); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType_,int UpLo_> | 
|  | template<bool Conjugate, typename RhsType, typename DstType> | 
|  | void LLT<MatrixType_,UpLo_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | dst = rhs; | 
|  |  | 
|  | matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); | 
|  | matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \internal use x = llt_object.solve(x); | 
|  | * | 
|  | * This is the \em in-place version of solve(). | 
|  | * | 
|  | * \param bAndX represents both the right-hand side matrix b and result x. | 
|  | * | 
|  | * This version avoids a copy when the right hand side matrix b is not needed anymore. | 
|  | * | 
|  | * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. | 
|  | * This function will const_cast it, so constness isn't honored here. | 
|  | * | 
|  | * \sa LLT::solve(), MatrixBase::llt() | 
|  | */ | 
|  | template<typename MatrixType, int UpLo_> | 
|  | template<typename Derived> | 
|  | void LLT<MatrixType,UpLo_>::solveInPlace(const MatrixBase<Derived> &bAndX) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | eigen_assert(m_matrix.rows()==bAndX.rows()); | 
|  | matrixL().solveInPlace(bAndX); | 
|  | matrixU().solveInPlace(bAndX); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix represented by the decomposition, | 
|  | * i.e., it returns the product: L L^*. | 
|  | * This function is provided for debug purpose. */ | 
|  | template<typename MatrixType, int UpLo_> | 
|  | MatrixType LLT<MatrixType,UpLo_>::reconstructedMatrix() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return matrixL() * matrixL().adjoint().toDenseMatrix(); | 
|  | } | 
|  |  | 
|  | /** \cholesky_module | 
|  | * \returns the LLT decomposition of \c *this | 
|  | * \sa SelfAdjointView::llt() | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const LLT<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::llt() const | 
|  | { | 
|  | return LLT<PlainObject>(derived()); | 
|  | } | 
|  |  | 
|  | /** \cholesky_module | 
|  | * \returns the LLT decomposition of \c *this | 
|  | * \sa SelfAdjointView::llt() | 
|  | */ | 
|  | template<typename MatrixType, unsigned int UpLo> | 
|  | inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> | 
|  | SelfAdjointView<MatrixType, UpLo>::llt() const | 
|  | { | 
|  | return LLT<PlainObject,UpLo>(m_matrix); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_LLT_H |